{"title":"Stem cells and cell replacement therapy for Parkinson's disease.","authors":"K-C Sonntag, F Simunovic, R Sanchez-Pernaute","doi":"10.1007/978-3-211-92660-4_24","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder caused by a progressive degeneration of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta (SNc) that predominantly affects the ventral population projecting to the dorsal striatum and leads to a gradual dysfunction of the motor system. There is currently no cure for PD. Pharmacological and surgical (e.g. deep brain stimulation) interventions can alleviate some of the symptoms, but lose their efficacy over time. The distinct loss of DA neurons in the SN offers the opportunity to assay neuronal cell replacement, and the clinical transplantation of fetal midbrain neuroblasts in PD patients has shown that this approach is feasible. However, there are multiple problems associated with the use of fetus-derived material, including limited availability. DA neurons derived from stem cells (SC) represent an alternative and unlimited cell source for cell replacement therapies. Currently, human pluripotent SC, such as embryonic (ES), and most recently, induced pluripotent stem cells (iPS), and multipotent (tissue-specific) adult SC are available, although the methodology for a reliable and efficient production of DA neurons necessary for biomedical applications is still underdeveloped. Here, we discuss some essentials for SC and SC-derived DA neurons to become therapeutic agents.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 73","pages":"287-99"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-92660-4_24","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-92660-4_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by a progressive degeneration of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta (SNc) that predominantly affects the ventral population projecting to the dorsal striatum and leads to a gradual dysfunction of the motor system. There is currently no cure for PD. Pharmacological and surgical (e.g. deep brain stimulation) interventions can alleviate some of the symptoms, but lose their efficacy over time. The distinct loss of DA neurons in the SN offers the opportunity to assay neuronal cell replacement, and the clinical transplantation of fetal midbrain neuroblasts in PD patients has shown that this approach is feasible. However, there are multiple problems associated with the use of fetus-derived material, including limited availability. DA neurons derived from stem cells (SC) represent an alternative and unlimited cell source for cell replacement therapies. Currently, human pluripotent SC, such as embryonic (ES), and most recently, induced pluripotent stem cells (iPS), and multipotent (tissue-specific) adult SC are available, although the methodology for a reliable and efficient production of DA neurons necessary for biomedical applications is still underdeveloped. Here, we discuss some essentials for SC and SC-derived DA neurons to become therapeutic agents.