{"title":"Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications","authors":"Tetsuro Tsuji , Kentaro Doi , Satoyuki Kawano","doi":"10.1016/j.jphotochemrev.2022.100533","DOIUrl":null,"url":null,"abstract":"<div><p>In this mini-review, recent advances on the role of a focused laser in micro- and nanofluidic systems is widely introduced with special interest in thermo-fluid dynamical aspects and their importance in optical manipulation. As a brief introduction to microfluidic systems, we describe the advantages and challenges of the use of micro- and nanoscale confinement in optical trapping, as well as standard fabrication techniques for micro- and nanofluidic systems. From thermo-fluid dynamical viewpoints, various phenomena that accompany a laser irradiation to fluidic devices, are explained in detail. These phenomena can affect the optical trapping of target materials significantly, and are classified into two categories: one that induces the fluid flow around the target and another that directly acts on it as an external force. These classes are reviewed by shedding light on some recent cutting-edge researches for optical manipulation. Some applications using thermo-fluid dynamics in microfluidic systems for the measurement of optical forces and for the separation, measurement, and detection of target materials are also introduced.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"52 ","pages":"Article 100533"},"PeriodicalIF":12.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In this mini-review, recent advances on the role of a focused laser in micro- and nanofluidic systems is widely introduced with special interest in thermo-fluid dynamical aspects and their importance in optical manipulation. As a brief introduction to microfluidic systems, we describe the advantages and challenges of the use of micro- and nanoscale confinement in optical trapping, as well as standard fabrication techniques for micro- and nanofluidic systems. From thermo-fluid dynamical viewpoints, various phenomena that accompany a laser irradiation to fluidic devices, are explained in detail. These phenomena can affect the optical trapping of target materials significantly, and are classified into two categories: one that induces the fluid flow around the target and another that directly acts on it as an external force. These classes are reviewed by shedding light on some recent cutting-edge researches for optical manipulation. Some applications using thermo-fluid dynamics in microfluidic systems for the measurement of optical forces and for the separation, measurement, and detection of target materials are also introduced.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.