{"title":"Oxidation of aliphatic and aromatic CH bonds by t-BuOOH catalyzed by μ-nitrido diiron phthalocyanine","authors":"Evgeny V. Kudrik , Alexander B. Sorokin","doi":"10.1016/j.molcata.2016.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>Low temperature selective transformation of alkanes to useful products continues to be an important challenge in chemistry and industry. μ-Nitrido diiron phthalocyanines in combination with H<sub>2</sub>O<sub>2</sub> have been recently identified as powerful oxidation catalysts for these challenging reactions due to the formation of ultra-high valent diiron oxo species PcFe(IV)μNFe(IV)<img>O(Pc<sup>+</sup><img>). This very strong <em>two-electron oxidizing</em> species is generated from peroxo complex PcFe(IV)μNFe(III)<img>O<img>O<img>R(Pc) (R<img>H in the case of H<sub>2</sub>O<sub>2</sub>) via <em>heterolytic</em> O<img>O bond cleavage. Therein we show that the evolution of the peroxo diiron complex depends on the peroxide structure. Using <sup>t</sup>BuOOH we have demonstrated the formation of an <em>one-electron oxidizing</em> PcFe(IV)μNFe(IV)<img>O(Pc) and <sup>t</sup>BuO<img> radical via <em>homolytic</em> O<img>O cleavage of the peroxocomplex. The reactivity of the μ-nitrido diiron tetra-<em>t</em>-butylphthalocyanine − <sup>t</sup>BuOOH catalytic system was investigated in the oxidation of different C<img>H bonds in alkanes, olefins, aromatic and alkylaromatic compounds. The main products of cyclohexane oxidation were cyclohexanone and cyclohexanol whereas bicyclohexyl was formed in minor amounts even in the presence of O<sub>2</sub> and <sup>t</sup>BuOOH. Under optimal conditions, the turnover numbers of almost 5300 have been achieved.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 499-505"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.013","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916303375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Low temperature selective transformation of alkanes to useful products continues to be an important challenge in chemistry and industry. μ-Nitrido diiron phthalocyanines in combination with H2O2 have been recently identified as powerful oxidation catalysts for these challenging reactions due to the formation of ultra-high valent diiron oxo species PcFe(IV)μNFe(IV)O(Pc+). This very strong two-electron oxidizing species is generated from peroxo complex PcFe(IV)μNFe(III)OOR(Pc) (RH in the case of H2O2) via heterolytic OO bond cleavage. Therein we show that the evolution of the peroxo diiron complex depends on the peroxide structure. Using tBuOOH we have demonstrated the formation of an one-electron oxidizing PcFe(IV)μNFe(IV)O(Pc) and tBuO radical via homolytic OO cleavage of the peroxocomplex. The reactivity of the μ-nitrido diiron tetra-t-butylphthalocyanine − tBuOOH catalytic system was investigated in the oxidation of different CH bonds in alkanes, olefins, aromatic and alkylaromatic compounds. The main products of cyclohexane oxidation were cyclohexanone and cyclohexanol whereas bicyclohexyl was formed in minor amounts even in the presence of O2 and tBuOOH. Under optimal conditions, the turnover numbers of almost 5300 have been achieved.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.