Kyung Soo Park , Jeong Hwa Kim , So Hyun Park , Dong Ju Moon , Hyun-Seog Roh , Chan-Hwa Chung , Soong Ho Um , Joon-Hwan Choi , Jong Wook Bae
{"title":"Direct activation of CH4 to oxygenates and unsaturated hydrocarbons using N2O on Fe-modified zeolites","authors":"Kyung Soo Park , Jeong Hwa Kim , So Hyun Park , Dong Ju Moon , Hyun-Seog Roh , Chan-Hwa Chung , Soong Ho Um , Joon-Hwan Choi , Jong Wook Bae","doi":"10.1016/j.molcata.2016.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>Direct activation of CH<sub>4</sub> to oxygenates and unsaturated light hydrocarbons was investigated using Fe-modified ZSM-5 and Ferrierite (FER) for a partial oxidation of CH<sub>4</sub> with N<sub>2</sub>O oxidant. The amount of active α-oxygen sites and number of Bronsted acid sites on the Fe-modified zeolites were well correlated with CH<sub>4</sub> conversion rate and product distributions. The amount of α-oxygen sites was largely changed according to preparation method such as wet impregnation or ion-exchange of iron precursor and types of zeolites. A large number of Bronsted acid sites and α-oxygen sites on the Fe-modified FER revealed a higher oxygenate formation such as methanol and dimethyl ether (DME) with COx, and a larger number of strong acid sites on Fe-modified ZSM-5 was also responsible for a higher selectivity to light hydrocarbons by a successive dehydration of oxygenates formed. The different catalytic performances were verified through proper measurements of the amount and type of acidic sites as well as the α-oxygen sites measured by N<sub>2</sub>O pulse chemisorption. The Fe-modified FER prepared by impregnation method possessed a larger amount of α-oxygen sites due to abundant Bronsted acid sites, which was responsible for a higher rate of CH<sub>4</sub> conversion to oxygenates with the help of N<sub>2</sub>O decomposition on the α-oxygen sites originated from iron oxide nanoparticles.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 130-140"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.008","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Direct activation of CH4 to oxygenates and unsaturated light hydrocarbons was investigated using Fe-modified ZSM-5 and Ferrierite (FER) for a partial oxidation of CH4 with N2O oxidant. The amount of active α-oxygen sites and number of Bronsted acid sites on the Fe-modified zeolites were well correlated with CH4 conversion rate and product distributions. The amount of α-oxygen sites was largely changed according to preparation method such as wet impregnation or ion-exchange of iron precursor and types of zeolites. A large number of Bronsted acid sites and α-oxygen sites on the Fe-modified FER revealed a higher oxygenate formation such as methanol and dimethyl ether (DME) with COx, and a larger number of strong acid sites on Fe-modified ZSM-5 was also responsible for a higher selectivity to light hydrocarbons by a successive dehydration of oxygenates formed. The different catalytic performances were verified through proper measurements of the amount and type of acidic sites as well as the α-oxygen sites measured by N2O pulse chemisorption. The Fe-modified FER prepared by impregnation method possessed a larger amount of α-oxygen sites due to abundant Bronsted acid sites, which was responsible for a higher rate of CH4 conversion to oxygenates with the help of N2O decomposition on the α-oxygen sites originated from iron oxide nanoparticles.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.