Linda M Shecterle, Kathleen R Terry, John A St Cyr
{"title":"The patented uses of D-ribose in cardiovascular diseases.","authors":"Linda M Shecterle, Kathleen R Terry, John A St Cyr","doi":"10.2174/157489010791515241","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases account for more deaths worldwide than any other illness. Myocardial ischemia, a common finding in cardiovascular diseases, lowers cellular energy levels, which affects a cell's integrity and function. Pre-clinical animal studies have reported lower cellular energy levels with an associated decreased function following myocardial ischemia. Recently, scientists have reported that the failing heart is energy starved and yet no pharmaceuticals have been able to address this issue with satisfactory results. Over decades, researchers have explored the use of various metabolites to replenish deficient cellular energy levels following induced ischemia with mixed results. However, D-ribose, a natural occurring carbohydrate, has demonstrated significant enhancing abilities in replenishing deficient cellular energy levels following myocardial ischemia, as well as improving depressed function in numerous animal investigations. Subsequent clinical trials have further substantiated these benefits of D-ribose in patients afflicted with ischemic cardiovascular disease and those carrying the diagnosis of congestive heart failure. The future of effective therapies for ischemic heart disease and congestive heart failure must strongly consider novel pharmaceuticals directed at replenishing cellular energy levels. Intellectual property and the represented patents in this paper emphasize the use of D-ribose for its cellular energy enhancing potential, reflected in both objective and subjective clinical improvements; therefore, substantiating its value in patients with ischemic cardiovascular diseases.</p>","PeriodicalId":20905,"journal":{"name":"Recent patents on cardiovascular drug discovery","volume":"5 2","pages":"138-42"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/157489010791515241","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on cardiovascular drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/157489010791515241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Cardiovascular diseases account for more deaths worldwide than any other illness. Myocardial ischemia, a common finding in cardiovascular diseases, lowers cellular energy levels, which affects a cell's integrity and function. Pre-clinical animal studies have reported lower cellular energy levels with an associated decreased function following myocardial ischemia. Recently, scientists have reported that the failing heart is energy starved and yet no pharmaceuticals have been able to address this issue with satisfactory results. Over decades, researchers have explored the use of various metabolites to replenish deficient cellular energy levels following induced ischemia with mixed results. However, D-ribose, a natural occurring carbohydrate, has demonstrated significant enhancing abilities in replenishing deficient cellular energy levels following myocardial ischemia, as well as improving depressed function in numerous animal investigations. Subsequent clinical trials have further substantiated these benefits of D-ribose in patients afflicted with ischemic cardiovascular disease and those carrying the diagnosis of congestive heart failure. The future of effective therapies for ischemic heart disease and congestive heart failure must strongly consider novel pharmaceuticals directed at replenishing cellular energy levels. Intellectual property and the represented patents in this paper emphasize the use of D-ribose for its cellular energy enhancing potential, reflected in both objective and subjective clinical improvements; therefore, substantiating its value in patients with ischemic cardiovascular diseases.