A method for efficient execution of bioinformatics workflows.

Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda
{"title":"A method for efficient execution of bioinformatics workflows.","authors":"Junya Seo,&nbsp;Yoshiyuki Kido,&nbsp;Shigeto Seno,&nbsp;Yoichi Takenaka,&nbsp;Hideo Matsuda","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient execution of data-intensive workflows has been playing an important role in bioinformatics as the amount of data has been rapidly increasing. The execution of such workflows must take into account the volume and pattern of communication. When orchestrating data-centric workflows, a centralized workflow engine can become a bottleneck to performance. To cope with the bottleneck, a hybrid approach with choreography for data management of workflows is proposed. However, when a workflow includes many repetitive operations, the approach might not gain good performance because of the overheads of its additional mechanism. This paper presents and evaluates an improvement of the hybrid approach for managing a large amount of data. The performance of the proposed method is demonstrated by measuring execution times of example workflows.</p>","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"23 1","pages":"139-48"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient execution of data-intensive workflows has been playing an important role in bioinformatics as the amount of data has been rapidly increasing. The execution of such workflows must take into account the volume and pattern of communication. When orchestrating data-centric workflows, a centralized workflow engine can become a bottleneck to performance. To cope with the bottleneck, a hybrid approach with choreography for data management of workflows is proposed. However, when a workflow includes many repetitive operations, the approach might not gain good performance because of the overheads of its additional mechanism. This paper presents and evaluates an improvement of the hybrid approach for managing a large amount of data. The performance of the proposed method is demonstrated by measuring execution times of example workflows.

一种有效执行生物信息学工作流程的方法。
随着数据量的迅速增加,数据密集型工作流程的有效执行在生物信息学中发挥着重要作用。此类工作流的执行必须考虑到通信的数量和模式。在编排以数据为中心的工作流时,集中式工作流引擎可能成为性能的瓶颈。为了解决这一瓶颈,提出了一种结合编排的工作流数据管理混合方法。然而,当工作流包含许多重复操作时,由于其附加机制的开销,该方法可能无法获得良好的性能。本文提出并评价了一种用于管理大量数据的混合方法的改进。通过测量示例工作流的执行时间,验证了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信