Inhibition of inducible nitric oxide synthase expression by a novel small molecule activator of the unfolded protein response.

Kent T Symons, Mark E Massari, Sara J Dozier, Phan M Nguyen, David Jenkins, Mark Herbert, Timothy C Gahman, Stewart A Noble, Natasha Rozenkrants, Yan Zhang, Tadimeti S Rao, Andrew K Shiau, Christian A Hassig
{"title":"Inhibition of inducible nitric oxide synthase expression by a novel small molecule activator of the unfolded protein response.","authors":"Kent T Symons,&nbsp;Mark E Massari,&nbsp;Sara J Dozier,&nbsp;Phan M Nguyen,&nbsp;David Jenkins,&nbsp;Mark Herbert,&nbsp;Timothy C Gahman,&nbsp;Stewart A Noble,&nbsp;Natasha Rozenkrants,&nbsp;Yan Zhang,&nbsp;Tadimeti S Rao,&nbsp;Andrew K Shiau,&nbsp;Christian A Hassig","doi":"10.2174/1875397300802010001","DOIUrl":null,"url":null,"abstract":"<p><p>The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2alpha and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"2 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/b1/TOCHGENJ-2-1.PMC2803434.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current chemical genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875397300802010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2alpha and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions.

Abstract Image

Abstract Image

Abstract Image

未折叠蛋白反应的新型小分子激活剂对诱导型一氧化氮合酶表达的抑制作用。
诱导型一氧化氮合酶(iNOS)的转录是由促炎信号通路网络激活的。在这里,我们描述了一种小分子的鉴定,这种小分子可以下调细胞因子激活细胞中iNOS mRNA和蛋白的表达,并抑制体内一氧化氮的产生。机制分析表明,这种小分子应激素也激活了未折叠蛋白反应(UPR),这是一种由内质网应激触发的信号通路。应激素诱导eIF2alpha的快速磷酸化和XBP-1的选择性剪接,标志着UPR的启动事件。此外,应激素激活了参与UPR的多个基因的转录。这些数据表明,在促炎条件下,UPR激活与iNOS mRNA和蛋白表达呈反比关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信