{"title":"A high throughput serum paraoxonase assay for discovery of small molecule modulators of PON1 activity.","authors":"Tiffany L Graves, John E Scott","doi":"10.2174/1875397300802010051","DOIUrl":null,"url":null,"abstract":"<p><p>PON1 has been demonstrated to be the serum enzyme responsible for detoxifying organophosphate chemical weapons and plays a protective role against atherosclerosis. In order to identify small molecules that modulate PON1 activity in serum, we developed a high throughput kinetic absorbance assay using mouse serum and the organophosphate paraoxon. The IC(50) value obtained for the known PON1 inhibitor, 2-hydroxyquinoline, matched the value reported for purified PON1. A compound library was screened resulting in no confirmed activators, but 12 confirmed inhibitors. Seven of these hits also inhibited purified human PON1. One compound was only two-fold less potent than 2-hydroxyquinoline in the serum assay, but 10-fold more potent against purified PON1. This compound (IC(50) = 420 nM) may be useful towards a chemical probe for PON1. Therefore, this assay has utility as a high throughput assay for discovery of small molecule modulators of PON1 activity that maintain activity in serum.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"2 ","pages":"51-61"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/b8/TOCHGENJ-2-51.PMC2803440.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current chemical genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875397300802010051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PON1 has been demonstrated to be the serum enzyme responsible for detoxifying organophosphate chemical weapons and plays a protective role against atherosclerosis. In order to identify small molecules that modulate PON1 activity in serum, we developed a high throughput kinetic absorbance assay using mouse serum and the organophosphate paraoxon. The IC(50) value obtained for the known PON1 inhibitor, 2-hydroxyquinoline, matched the value reported for purified PON1. A compound library was screened resulting in no confirmed activators, but 12 confirmed inhibitors. Seven of these hits also inhibited purified human PON1. One compound was only two-fold less potent than 2-hydroxyquinoline in the serum assay, but 10-fold more potent against purified PON1. This compound (IC(50) = 420 nM) may be useful towards a chemical probe for PON1. Therefore, this assay has utility as a high throughput assay for discovery of small molecule modulators of PON1 activity that maintain activity in serum.