Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain.

IF 1.4
Ewa K Stachowiak, Indrajit Roy, Yu-Wei Lee, Mariolina Capacchietti, John M Aletta, Paras N Prasad, Michal K Stachowiak
{"title":"Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain.","authors":"Ewa K Stachowiak,&nbsp;Indrajit Roy,&nbsp;Yu-Wei Lee,&nbsp;Mariolina Capacchietti,&nbsp;John M Aletta,&nbsp;Paras N Prasad,&nbsp;Michal K Stachowiak","doi":"10.1039/b902617g","DOIUrl":null,"url":null,"abstract":"<p><p>Neurogenesis, the process of differentiation of neuronal stem/progenitor cells (NS/PC) into mature neurons, holds the key to the treatment of various neurodegenerative disorders, which are a major health issue for the world's aging population. We report that targeting the novel integrative nuclear FGF Receptor 1 signaling (INFS) pathway enhances the latent potential of NS/PCs to undergo neuronal differentiation, thus promoting neurogenesis in the adult brain. Employing organically modified silica (ORMOSIL)-DNA nanoplexes to efficiently transfect recombinant nuclear forms of FGFR1 and its FGF-2 ligand into the brain subventricular zone, we find that INFS stimulates the NS/PC to withdraw from the cell cycle, differentiate into doublecortin expressing migratory neuroblasts and neurons that migrate to the olfactory bulb, subcortical brain regions and in the brain cortex. Thus, nanoparticle-mediated non-viral gene transfer may be used to induce selective differentiation of NS/PCs, providing a potentially significant impact on the treatment of a broad range of neurological disorders.</p>","PeriodicalId":520649,"journal":{"name":"Integrative biology : quantitative biosciences from nano to macro","volume":" ","pages":"394-403"},"PeriodicalIF":1.4000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/b902617g","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative biology : quantitative biosciences from nano to macro","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/b902617g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/5/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Neurogenesis, the process of differentiation of neuronal stem/progenitor cells (NS/PC) into mature neurons, holds the key to the treatment of various neurodegenerative disorders, which are a major health issue for the world's aging population. We report that targeting the novel integrative nuclear FGF Receptor 1 signaling (INFS) pathway enhances the latent potential of NS/PCs to undergo neuronal differentiation, thus promoting neurogenesis in the adult brain. Employing organically modified silica (ORMOSIL)-DNA nanoplexes to efficiently transfect recombinant nuclear forms of FGFR1 and its FGF-2 ligand into the brain subventricular zone, we find that INFS stimulates the NS/PC to withdraw from the cell cycle, differentiate into doublecortin expressing migratory neuroblasts and neurons that migrate to the olfactory bulb, subcortical brain regions and in the brain cortex. Thus, nanoparticle-mediated non-viral gene transfer may be used to induce selective differentiation of NS/PCs, providing a potentially significant impact on the treatment of a broad range of neurological disorders.

通过纳米颗粒介导的基因转移靶向新的综合核FGFR1信号传导刺激成人大脑中的神经发生。
神经发生是神经干细胞/祖细胞(NS/PC)向成熟神经元分化的过程,是治疗各种神经退行性疾病的关键,是世界人口老龄化的一个主要健康问题。我们报道了靶向新的核FGF受体1信号通路(INFS)增强NS/PCs进行神经元分化的潜在潜力,从而促进成人大脑的神经发生。利用有机修饰二氧化硅(ORMOSIL)-DNA纳米复合物有效地将重组核形式的FGFR1及其FGF-2配体转染到脑室下区,我们发现INFS刺激NS/PC退出细胞周期,分化为表达双皮质素的迁移神经母细胞和神经元,并迁移到嗅球、皮质下脑区和脑皮层。因此,纳米颗粒介导的非病毒基因转移可用于诱导NS/PCs的选择性分化,为广泛的神经系统疾病的治疗提供潜在的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信