Concealed conduction effects in the atrium.

Jan J Zebrowski, Pawel Kuklik, Teodor Buchner, Rafał Baranowski
{"title":"Concealed conduction effects in the atrium.","authors":"Jan J Zebrowski,&nbsp;Pawel Kuklik,&nbsp;Teodor Buchner,&nbsp;Rafał Baranowski","doi":"10.1109/MEMB.2009.934628","DOIUrl":null,"url":null,"abstract":"<p><p>A one-dimensional (1-D) model of the atrium together with the sinoatrial (SA) and atrioventricular (AV) nodes is presented in this article. The two nodes are each modeled by 15-element, diffusively coupled, modified van der Pol oscillator chains, while the atrium tissue is represented by a 90-element chain of diffusively coupled FitzHugh-Nagumo (FHN) equations. The modified van der Pol oscillators are able to reproduce physiologically important properties, such as the refraction period, phase-sensitivity properties, and modes of change of the action potential frequency. The activity of both branches of the autonomous nervous system may be introduced into the model in a simplified way. The model enables the study of the effect of the magnitude of the action potential conduction rate in the nodes on interspike intervals (ISIs; equivalent of RR intervals) and explains the occurrence of RR-interval alternans in certain patients. The effect of breathing modulation of heart rate and of a single deep breath can also be modeled. Finally, concealed conduction effects in the atrium are studied, yielding results comparable with recorded heart rate variability data.</p>","PeriodicalId":50391,"journal":{"name":"IEEE Engineering in Medicine and Biology Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MEMB.2009.934628","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Engineering in Medicine and Biology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMB.2009.934628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A one-dimensional (1-D) model of the atrium together with the sinoatrial (SA) and atrioventricular (AV) nodes is presented in this article. The two nodes are each modeled by 15-element, diffusively coupled, modified van der Pol oscillator chains, while the atrium tissue is represented by a 90-element chain of diffusively coupled FitzHugh-Nagumo (FHN) equations. The modified van der Pol oscillators are able to reproduce physiologically important properties, such as the refraction period, phase-sensitivity properties, and modes of change of the action potential frequency. The activity of both branches of the autonomous nervous system may be introduced into the model in a simplified way. The model enables the study of the effect of the magnitude of the action potential conduction rate in the nodes on interspike intervals (ISIs; equivalent of RR intervals) and explains the occurrence of RR-interval alternans in certain patients. The effect of breathing modulation of heart rate and of a single deep breath can also be modeled. Finally, concealed conduction effects in the atrium are studied, yielding results comparable with recorded heart rate variability data.

心房隐蔽传导效应。
本文介绍了心房与窦房结(SA)和房室结(AV)的一维(1-D)模型。这两个节点分别由15个单元的扩散耦合的改进van der Pol振荡器链来建模,而心房组织则由一个90个单元的扩散耦合fitzhuh - nagumo (FHN)方程链来表示。改进的范德波尔振荡器能够再现重要的生理特性,如折射周期、相敏特性和动作电位频率的变化模式。自主神经系统的两个分支的活动可以以一种简化的方式引入模型。该模型能够研究节点动作电位传导率的大小对峰间间隔的影响。相当于RR间期),并解释了某些患者RR间期交替的发生。呼吸调节心率和单次深呼吸的效果也可以建模。最后,研究了心房的隐蔽传导效应,得出的结果与记录的心率变异性数据相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Engineering in Medicine and Biology Magazine
IEEE Engineering in Medicine and Biology Magazine 工程技术-工程:生物医学
自引率
0.00%
发文量
1
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信