{"title":"Structure and real-time monitoring of the enzymatic reaction of APOBEC3G which is involved in anti-HIV activity.","authors":"Ayako Furukawa, Takashi Nagata, Akimasa Matsugami, Yuichirou Habu, Ryuichi Sugiyama, Fumiaki Hayashi, Naohiro Kobayashi, Shigeyuki Yokoyama, Hiroshi Takaku, Masato Katahira","doi":"10.1093/nass/nrp044","DOIUrl":null,"url":null,"abstract":"<p><p>Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) is known to play a role in intrinsic cellular immunity against human immunodeficiency virus type 1 (HIV-1). The antiretroviral activity of APOBEC3G is associated with hypermutation of viral DNA through cytidine deamination. APOBEC3G contains two cytidine deaminase domains that are characterized by a highly conserved zinc-coordinating motif. It is known that only the C-terminal domain of APOBEC3G (c-APOBEC3G) is involved in the catalytic activity. Here, we present the solution structure and the interaction with single-stranded DNA of c-APOBEC3G. Furthermore, we have succeeded for the first time in monitoring the deamination reaction of c-APOBEC3G in real-time using NMR signals. The monitoring has demonstrated that the deamination reaction occurs in a strict 3'-->5'</p>","PeriodicalId":87448,"journal":{"name":"Nucleic acids symposium series (2004)","volume":" 53","pages":"87-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/nrp044","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series (2004)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/nrp044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) is known to play a role in intrinsic cellular immunity against human immunodeficiency virus type 1 (HIV-1). The antiretroviral activity of APOBEC3G is associated with hypermutation of viral DNA through cytidine deamination. APOBEC3G contains two cytidine deaminase domains that are characterized by a highly conserved zinc-coordinating motif. It is known that only the C-terminal domain of APOBEC3G (c-APOBEC3G) is involved in the catalytic activity. Here, we present the solution structure and the interaction with single-stranded DNA of c-APOBEC3G. Furthermore, we have succeeded for the first time in monitoring the deamination reaction of c-APOBEC3G in real-time using NMR signals. The monitoring has demonstrated that the deamination reaction occurs in a strict 3'-->5'