Predicting flexible length linear B-cell epitopes.

Yasser El-Manzalawy, Drena Dobbs, Vasant Honavar
{"title":"Predicting flexible length linear B-cell epitopes.","authors":"Yasser El-Manzalawy,&nbsp;Drena Dobbs,&nbsp;Vasant Honavar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score between any arbitrary pair of variable length sequences. The second approach utilizes four different methods of mapping a variable length sequence into a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers evaluated in this study. An implementation of FBCPred and the datasets used in this study are publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"121-32"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400678/pdf/nihms147917.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score between any arbitrary pair of variable length sequences. The second approach utilizes four different methods of mapping a variable length sequence into a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers evaluated in this study. An implementation of FBCPred and the datasets used in this study are publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

预测弹性长度线性b细胞表位。
鉴定b细胞表位在疫苗设计、免疫诊断试验和抗体生产中起着重要作用。因此,可靠地预测b细胞表位的计算工具是非常需要的。我们探索了两种预测灵活长度线性b细胞表位的机器学习方法。第一种方法利用四个序列核来确定任意一对变长序列之间的相似性得分。第二种方法利用四种不同的方法将可变长度序列映射到固定长度的特征向量。基于我们的经验比较,我们提出了FBCPred,一种利用子序列核预测弹性长度线性b细胞表位的新方法。我们的结果表明,FBCPred显著优于本研究中评估的所有其他分类器。FBCPred的实现和本研究中使用的数据集可通过我们的线性b细胞表位预测服务器BCPREDS公开获取,网址:http://ailab.cs.iastate.edu/bcpreds/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信