Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.

Charles F Babbs
{"title":"Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.","authors":"Charles F Babbs","doi":"10.1007/s10558-009-9075-2","DOIUrl":null,"url":null,"abstract":"<p><p>This paper demonstrates quantitatively, using streamlined mathematics, how the transmembrane ionic currents in individual cardiac muscle cells act to produce the body surface potentials of the electrocardiogram (ECG). From fundamental principles of electrostatics, anatomy, and physiology, one can characterize the strength of apparent dipoles along a wavefront of depolarization in a local volume of myocardium. Net transmembrane flow of ionic current in actively depolarizing or repolarizing tissue induces extracellular current flow, which sets up a field of electrical potential that resembles that of a dipole. The local dipole strength depends upon the tissue cross section, the tissue resistivity, the resting membrane potential, the membrane capacitance, the volume fraction of intracellular fluid, the time rate of change of the action potential, and the cell radius. There are no unknown, \"free\" parameters. There are no arbitrary scale factors. Body surface potentials are a function of the summed local dipole strengths, directions, and distances from the measuring points. Calculations of body surface potentials can be made for the scenarios of depolarization (QRS complex), repolarization (T wave) and localized acute injury (ST segment shifts) and agree well with experimentally measured potentials. This simplified predictive dipole theory provides a solution to the forward problem of electrocardiography that explains from a physiological perspective how the collective depolarization and repolarization of individual cardiac muscle cells create body surface potentials in health and disease.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"9 2","pages":"59-71"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-009-9075-2","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-009-9075-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/6/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper demonstrates quantitatively, using streamlined mathematics, how the transmembrane ionic currents in individual cardiac muscle cells act to produce the body surface potentials of the electrocardiogram (ECG). From fundamental principles of electrostatics, anatomy, and physiology, one can characterize the strength of apparent dipoles along a wavefront of depolarization in a local volume of myocardium. Net transmembrane flow of ionic current in actively depolarizing or repolarizing tissue induces extracellular current flow, which sets up a field of electrical potential that resembles that of a dipole. The local dipole strength depends upon the tissue cross section, the tissue resistivity, the resting membrane potential, the membrane capacitance, the volume fraction of intracellular fluid, the time rate of change of the action potential, and the cell radius. There are no unknown, "free" parameters. There are no arbitrary scale factors. Body surface potentials are a function of the summed local dipole strengths, directions, and distances from the measuring points. Calculations of body surface potentials can be made for the scenarios of depolarization (QRS complex), repolarization (T wave) and localized acute injury (ST segment shifts) and agree well with experimentally measured potentials. This simplified predictive dipole theory provides a solution to the forward problem of electrocardiography that explains from a physiological perspective how the collective depolarization and repolarization of individual cardiac muscle cells create body surface potentials in health and disease.

用汇总偶极子模型定量预测心肌动作电位的体表电位。
本文用流线型数学定量地论证了单个心肌细胞的跨膜离子电流是如何产生心电图体表电位的。从静电学、解剖学和生理学的基本原理出发,人们可以表征局部心肌体积内沿去极化波前的表观偶极子强度。在主动去极化或再极化的组织中,离子电流的净跨膜流动会诱导细胞外电流流动,从而形成类似于偶极子的电势场。局部偶极子强度取决于组织截面、组织电阻率、静息膜电位、膜电容、细胞内液的体积分数、动作电位的时间变化率和细胞半径。没有未知的“自由”参数。没有任意的比例因子。体表电位是局部偶极子强度、方向和与测点的距离之和的函数。体表电位可以在去极化(QRS复合体)、复极化(T波)和局部急性损伤(ST段移位)三种情况下进行计算,与实验测量电位吻合较好。这种简化的预测偶极子理论为心电图的正向问题提供了一个解决方案,从生理学的角度解释了单个心肌细胞的集体去极化和复极化如何在健康和疾病中产生体表电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信