Human-observer LROC study of lesion detection in Ga-67 SPECT images reconstructed using MAP with anatomical priors.

Andre Lehovich, Philippe P Bruyant, Howard C Gifford, Peter B Schneider, Shane Squires, Robert Licho, Gene Gindi, Michael A King
{"title":"Human-observer LROC study of lesion detection in Ga-67 SPECT images reconstructed using MAP with anatomical priors.","authors":"Andre Lehovich,&nbsp;Philippe P Bruyant,&nbsp;Howard C Gifford,&nbsp;Peter B Schneider,&nbsp;Shane Squires,&nbsp;Robert Licho,&nbsp;Gene Gindi,&nbsp;Michael A King","doi":"10.1109/NSSMIC.2006.354226","DOIUrl":null,"url":null,"abstract":"<p><p>We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"3 ","pages":"1699-1702"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2006.354226","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2006.354226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.

具有解剖学先验的MAP重构Ga-67 SPECT图像损伤检测的人-观察者LROC研究。
我们比较图像质量的SPECT重建与没有解剖先验。定位-响应工作特性(LROC)曲线下的面积是我们的优值。模拟Ga-67柠檬酸盐图像,SPECT淋巴结节显像剂,使用MCAT数字幻影生成。重建的图像由人类观察者阅读。比较了几种重构策略,包括重尺度块迭代(RBI)和具有不同先验的最大后验(MAP)。我们发现,利用器官和病变边界的先验知识重建MAP可显著提高病变检测性能(p < 0.05)。伪病变边界,没有增加摄取的区域,被错误地视为病变边界的先验知识,不会降低性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信