Spectral preprocessing for clustering time-series gene expressions.

Wentao Zhao, Erchin Serpedin, Edward R Dougherty
{"title":"Spectral preprocessing for clustering time-series gene expressions.","authors":"Wentao Zhao,&nbsp;Erchin Serpedin,&nbsp;Edward R Dougherty","doi":"10.1155/2009/713248","DOIUrl":null,"url":null,"abstract":"<p><p>Based on gene expression profiles, genes can be partitioned into clusters, which might be associated with biological processes or functions, for example, cell cycle, circadian rhythm, and so forth. This paper proposes a novel clustering preprocessing strategy which combines clustering with spectral estimation techniques so that the time information present in time series gene expressions is fully exploited. By comparing the clustering results with a set of biologically annotated yeast cell-cycle genes, the proposed clustering strategy is corroborated to yield significantly different clusters from those created by the traditional expression-based schemes. The proposed technique is especially helpful in grouping genes participating in time-regulated processes.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"713248"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/713248","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/713248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Based on gene expression profiles, genes can be partitioned into clusters, which might be associated with biological processes or functions, for example, cell cycle, circadian rhythm, and so forth. This paper proposes a novel clustering preprocessing strategy which combines clustering with spectral estimation techniques so that the time information present in time series gene expressions is fully exploited. By comparing the clustering results with a set of biologically annotated yeast cell-cycle genes, the proposed clustering strategy is corroborated to yield significantly different clusters from those created by the traditional expression-based schemes. The proposed technique is especially helpful in grouping genes participating in time-regulated processes.

Abstract Image

Abstract Image

Abstract Image

聚类时间序列基因表达的光谱预处理。
基于基因表达谱,可以将基因划分成簇,簇可能与生物过程或功能有关,例如细胞周期、昼夜节律等。本文提出了一种新的聚类预处理策略,将聚类与谱估计技术相结合,充分利用时间序列基因表达中的时间信息。通过将聚类结果与一组酵母细胞周期基因的生物学注释进行比较,证实了所提出的聚类策略产生的聚类与传统基于表达的方案产生的聚类有显著不同。所提出的技术尤其有助于对参与时间调节过程的基因进行分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信