MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE SIMPLE-SHAPED CELL.

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
B Rubinstein, K Jacobson, A Mogilner
{"title":"MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE SIMPLE-SHAPED CELL.","authors":"B Rubinstein,&nbsp;K Jacobson,&nbsp;A Mogilner","doi":"10.1137/04060370X","DOIUrl":null,"url":null,"abstract":"<p><p>Cell crawling is an important biological phenomenon underlying coordinated cell movement in morphogenesis, cancer, and wound healing. In recent decades the process of cell crawling has been experimentally and theoretically dissected into further subprocesses: protrusion of the cell at its leading edge, retraction of the cell body, and graded adhesion. A number of one-dimensional (1-D) models explain successfully a proximal-distal organization and movement of the motile cell. However, more adequate two-dimensional (2-D) models are lacking. We propose a multiscale 2-D computational model of the lamellipodium (motile appendage) of a simply shaped, rapidly crawling fish keratocyte cell. We couple submodels of (i) protrusion and adhesion at the leading edge, (ii) the elastic 2-D lamellipodial actin network, (iii) the actin-myosin contractile bundle at the rear edge, and (iv) the convection-reaction-diffusion actin transport on the free boundary lamellipodial domain. We simulate the combined model numerically using a finite element approach. The simulations reproduce observed cell shapes, forces, and movements and explain some experimental results on perturbations of the actin machinery. This novel 2-D model of the crawling cell makes testable predictions and posits questions to be answered by future modeling.</p>","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/04060370X","citationCount":"166","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/04060370X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 166

Abstract

Cell crawling is an important biological phenomenon underlying coordinated cell movement in morphogenesis, cancer, and wound healing. In recent decades the process of cell crawling has been experimentally and theoretically dissected into further subprocesses: protrusion of the cell at its leading edge, retraction of the cell body, and graded adhesion. A number of one-dimensional (1-D) models explain successfully a proximal-distal organization and movement of the motile cell. However, more adequate two-dimensional (2-D) models are lacking. We propose a multiscale 2-D computational model of the lamellipodium (motile appendage) of a simply shaped, rapidly crawling fish keratocyte cell. We couple submodels of (i) protrusion and adhesion at the leading edge, (ii) the elastic 2-D lamellipodial actin network, (iii) the actin-myosin contractile bundle at the rear edge, and (iv) the convection-reaction-diffusion actin transport on the free boundary lamellipodial domain. We simulate the combined model numerically using a finite element approach. The simulations reproduce observed cell shapes, forces, and movements and explain some experimental results on perturbations of the actin machinery. This novel 2-D model of the crawling cell makes testable predictions and posits questions to be answered by future modeling.

运动单形细胞的多尺度二维建模。
细胞爬行是一种重要的生物学现象,是细胞在形态发生、癌症和伤口愈合过程中协调运动的基础。近几十年来,细胞爬行的过程在实验和理论上被进一步分解为几个子过程:细胞前缘的突出、细胞体的收缩和逐渐粘附。许多一维(1-D)模型成功地解释了运动细胞的近端到远端组织和运动。然而,缺乏更充分的二维(2-D)模型。我们提出了一个形状简单,快速爬行的鱼角质细胞的板状基底(运动附属物)的多尺度二维计算模型。我们耦合了(i)前缘的突出和粘附,(ii)弹性二维板形肌动蛋白网络,(iii)后边缘的肌动蛋白-肌球蛋白收缩束,以及(iv)自由边界板形结构域的对流-反应-扩散肌动蛋白运输的子模型。我们使用有限元方法对组合模型进行数值模拟。模拟重现了观察到的细胞形状、力和运动,并解释了肌动蛋白机制扰动的一些实验结果。这种新的爬行细胞的二维模型做出了可测试的预测,并提出了未来建模需要回答的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multiscale Modeling & Simulation
Multiscale Modeling & Simulation 数学-数学跨学科应用
CiteScore
2.80
自引率
6.20%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods. By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信