In silico gene discovery.

Bing Yu
{"title":"In silico gene discovery.","authors":"Bing Yu","doi":"10.1007/978-1-60327-148-6_1","DOIUrl":null,"url":null,"abstract":"<p><p>Complex diseases can involve the interaction of multiple genes and environmental factors. Discovering these genes is difficult, and in silico based strategies can significantly improve their detection. Data mining and automated tracking of new knowledge facilitate locus mapping. At the gene search stage, in silico prioritization of candidate genes plays an indispensable role in dealing with linked or associated loci. In silico analysis can also differentiate subtle consequences of coding DNA variants and remains the major method to predict functionality for non-coding DNA variants, particularly those in promoter regions.</p>","PeriodicalId":18460,"journal":{"name":"Methods in molecular medicine","volume":"141 ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-1-60327-148-6_1","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-60327-148-6_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Complex diseases can involve the interaction of multiple genes and environmental factors. Discovering these genes is difficult, and in silico based strategies can significantly improve their detection. Data mining and automated tracking of new knowledge facilitate locus mapping. At the gene search stage, in silico prioritization of candidate genes plays an indispensable role in dealing with linked or associated loci. In silico analysis can also differentiate subtle consequences of coding DNA variants and remains the major method to predict functionality for non-coding DNA variants, particularly those in promoter regions.

在硅基因发现。
复杂疾病可能涉及多种基因和环境因素的相互作用。发现这些基因是困难的,基于计算机的策略可以显著提高它们的检测。数据挖掘和自动跟踪新知识有助于轨迹映射。在基因搜索阶段,候选基因的计算机优先排序在连锁或关联位点的处理中起着不可或缺的作用。计算机分析也可以区分编码DNA变异的微妙后果,并且仍然是预测非编码DNA变异功能的主要方法,特别是在启动子区域的那些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信