Thammaiah Viswanatha, Laura Marrone, Valerie Goodfellow, Gary I Dmitrienko
{"title":"Assays for beta-lactamase activity and inhibition.","authors":"Thammaiah Viswanatha, Laura Marrone, Valerie Goodfellow, Gary I Dmitrienko","doi":"10.1007/978-1-59745-246-5_19","DOIUrl":null,"url":null,"abstract":"<p><p>The ability, either innate or acquired, to produce beta-lactamases, enzymes capable of hydrolyzing the endocyclic peptide bond in beta-lactam antibiotics, would appear to be a primary contributor to the ever-increasing incidences of resistance to this class of antibiotics. To date, four distinct classes, A, B, C, and D, of beta-lactamases have been identified. Of these, enzymes in classes A, C, and D utilize a serine residue as a nucleophile in their catalytic mechanism while class B members are Zn2+-dependent for their function. Efforts have been and still continue to be made toward the development of potent inhibitors of these enzymes as a means to ensure the efficacy of beta-lactam antibiotics in clinical medicine. This chapter concerns procedures for the evaluation of the catalytic activity of beta-lactamases as a means to screen compounds for their inhibitory potency.</p>","PeriodicalId":18460,"journal":{"name":"Methods in molecular medicine","volume":"142 ","pages":"239-60"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-1-59745-246-5_19","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-59745-246-5_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The ability, either innate or acquired, to produce beta-lactamases, enzymes capable of hydrolyzing the endocyclic peptide bond in beta-lactam antibiotics, would appear to be a primary contributor to the ever-increasing incidences of resistance to this class of antibiotics. To date, four distinct classes, A, B, C, and D, of beta-lactamases have been identified. Of these, enzymes in classes A, C, and D utilize a serine residue as a nucleophile in their catalytic mechanism while class B members are Zn2+-dependent for their function. Efforts have been and still continue to be made toward the development of potent inhibitors of these enzymes as a means to ensure the efficacy of beta-lactam antibiotics in clinical medicine. This chapter concerns procedures for the evaluation of the catalytic activity of beta-lactamases as a means to screen compounds for their inhibitory potency.