{"title":"Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana Fusarium wilt.","authors":"Ya-Ping Chen, Yun-Feng Chen, Jie-Tang Zhao, Xia Huang, Xue-Lin Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Wild banana species are essential natural gene pools for banana improvement. In this study, six RGAs about 500 bp were obtained from leaves of Musa acuminata, a wild banana shown to be resistant to banana Fusarium wilt race 4, by PCR amplification with degenerate primers designed according to the conserved NBS motif and serine/threonine kinase domain of plant resistance (R) genes. Among these RGAs, the deduced amino acids of WNB1 and WNB2 contain NB-ARC domain and WNB1 can be translated into polypeptide uninterrupted by stop codons. The deduced amino acids of other four RGAs (WST1, WST2, WST3 and WST4) all contain the serine/threonine kinase domain and WST3 encodes a polypeptide homologous to that of bacterial blight resistance gene Xa21 of rice. At different time after inoculation with Fusarium oxysporum f. sp. cubense (FOC) race 4, the transcript patterns of WNB1 and WST3 was enhanced, which implied that the expression of WNB1 and WST3 may be related to the resistance of banana to Fusarium wilt.</p>","PeriodicalId":64030,"journal":{"name":"植物生理与分子生物学学报","volume":"33 6","pages":"567-73"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"植物生理与分子生物学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wild banana species are essential natural gene pools for banana improvement. In this study, six RGAs about 500 bp were obtained from leaves of Musa acuminata, a wild banana shown to be resistant to banana Fusarium wilt race 4, by PCR amplification with degenerate primers designed according to the conserved NBS motif and serine/threonine kinase domain of plant resistance (R) genes. Among these RGAs, the deduced amino acids of WNB1 and WNB2 contain NB-ARC domain and WNB1 can be translated into polypeptide uninterrupted by stop codons. The deduced amino acids of other four RGAs (WST1, WST2, WST3 and WST4) all contain the serine/threonine kinase domain and WST3 encodes a polypeptide homologous to that of bacterial blight resistance gene Xa21 of rice. At different time after inoculation with Fusarium oxysporum f. sp. cubense (FOC) race 4, the transcript patterns of WNB1 and WST3 was enhanced, which implied that the expression of WNB1 and WST3 may be related to the resistance of banana to Fusarium wilt.