Elemental characterization of trifala powders and tablets by instrumental neutron activation analysis, thermal analysis and spectral studies of gallic acid.
{"title":"Elemental characterization of trifala powders and tablets by instrumental neutron activation analysis, thermal analysis and spectral studies of gallic acid.","authors":"R Paul Choudhury, A Kumar, A N Garg","doi":"10.1300/j157v07n02_02","DOIUrl":null,"url":null,"abstract":"<p><p>Trifala is one of the most popular herbal formulations, marketed either as powder or a tablet and is used in all parts of India. It is an effective laxative, antioxidant, anticancer and antidiabetic agent, and is used to refresh the eyes. In order to understand the therapeutic uses of trifala, the powder and tablet forms from Zandu Pharmaceuticals, Mumbai, were analyzed for six minor (Na, K, Mg, Ca, Cl and P) and 23 trace (Al, Ba, Br, Cd, Co, Cr, Cs, Cu, Fe, Eu, Hf, Hg, La, Mn, Ni, P, Pb, Rb, Sb, Se, Th, V and Zn) elements. The elements were determined by employing instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). A comparison of the elemental contents in the powder and tablets showed wide variations. The powder was rich in Cr, Fe, Se and Zn, whereas the tablet contained a four-fold higher Mn compared to the powder. Column and thin layer chromatography (TLC) in ethyl acetate/methanol (7:3) were used for the separation of gallic acid in ethanolic extract. It was further confirmed by elemental analysis and spectral methods and quantitatively estimated to the extent of approximately 2%. Thermogravimetric decomposition studies show a three stage process, first a slow process with approximately 20% wt loss at temperatures up to 200 degrees C followed by a fast process losing another 30-35% wt at approximately 300 degrees C for both the powder and tablets. At 700 degrees C metal oxide residue of 7.5 and approximately 16% were left for powder and tablets, respectively.</p>","PeriodicalId":73776,"journal":{"name":"Journal of herbal pharmacotherapy","volume":"7 2","pages":"15-29"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of herbal pharmacotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1300/j157v07n02_02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Trifala is one of the most popular herbal formulations, marketed either as powder or a tablet and is used in all parts of India. It is an effective laxative, antioxidant, anticancer and antidiabetic agent, and is used to refresh the eyes. In order to understand the therapeutic uses of trifala, the powder and tablet forms from Zandu Pharmaceuticals, Mumbai, were analyzed for six minor (Na, K, Mg, Ca, Cl and P) and 23 trace (Al, Ba, Br, Cd, Co, Cr, Cs, Cu, Fe, Eu, Hf, Hg, La, Mn, Ni, P, Pb, Rb, Sb, Se, Th, V and Zn) elements. The elements were determined by employing instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). A comparison of the elemental contents in the powder and tablets showed wide variations. The powder was rich in Cr, Fe, Se and Zn, whereas the tablet contained a four-fold higher Mn compared to the powder. Column and thin layer chromatography (TLC) in ethyl acetate/methanol (7:3) were used for the separation of gallic acid in ethanolic extract. It was further confirmed by elemental analysis and spectral methods and quantitatively estimated to the extent of approximately 2%. Thermogravimetric decomposition studies show a three stage process, first a slow process with approximately 20% wt loss at temperatures up to 200 degrees C followed by a fast process losing another 30-35% wt at approximately 300 degrees C for both the powder and tablets. At 700 degrees C metal oxide residue of 7.5 and approximately 16% were left for powder and tablets, respectively.