Hemisphere-Specific Effects of Subthalamic Nucleus Deep Brain Stimulation on Speaking Rate and Articulatory Accuracy of Syllable Repetitions in Parkinson's Disease.
Emily Q Wang, Leo Verhagen Metman, Roy A E Bakay, Jean Arzbaecher, Bryan Bernard, Daniel M Corcos
{"title":"Hemisphere-Specific Effects of Subthalamic Nucleus Deep Brain Stimulation on Speaking Rate and Articulatory Accuracy of Syllable Repetitions in Parkinson's Disease.","authors":"Emily Q Wang, Leo Verhagen Metman, Roy A E Bakay, Jean Arzbaecher, Bryan Bernard, Daniel M Corcos","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study tested the hypothesis that left versus right deep brain stimulation (DBS) of the subthalamic nucleus (STN) would have differential effects on speech. Twenty right-handed individuals with advanced Parkinson's disease (PD) underwent unilateral STN DBS. Ten were operated on the right and 10 on the left hemisphere as indicated by severity of nonspeech motor function. Speech was evaluated before surgery and 3 to 6 months after surgery with stimulator-off and with stimulator-on, with all participants off anti-parkinsonian medication for 12 hours before evaluation. Evaluators and patient speakers were blinded to the stimulator status at the postsurgery evaluations. Motor performance was assessed with UPDRS-III. Each participant produced three samples of diadochokinetic syllables. Syllable rate, syllable and vowel duration, VOT, and F0 were obtained. The diadochokinetic syllables were rated for articulatory accuracy and speaking rate. Twenty graduate clinicians served as judges. The samples were randomly presented via headphones. A mixed ANOVA with repeated measures was used to assess the significance of the changes in UPRS-III scores and speech measures. The results indicated that unilateral STN DBS produced improvement in nonspeech motor function regardless of the side of stimulation. In contrast, the changes in articulatory accuracy and syllable rate associated with the STN DBS were hemisphere specific.</p>","PeriodicalId":50131,"journal":{"name":"Journal of medical speech-language pathology","volume":"14 4","pages":"323-334"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2239259/pdf/nihms-26516.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical speech-language pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study tested the hypothesis that left versus right deep brain stimulation (DBS) of the subthalamic nucleus (STN) would have differential effects on speech. Twenty right-handed individuals with advanced Parkinson's disease (PD) underwent unilateral STN DBS. Ten were operated on the right and 10 on the left hemisphere as indicated by severity of nonspeech motor function. Speech was evaluated before surgery and 3 to 6 months after surgery with stimulator-off and with stimulator-on, with all participants off anti-parkinsonian medication for 12 hours before evaluation. Evaluators and patient speakers were blinded to the stimulator status at the postsurgery evaluations. Motor performance was assessed with UPDRS-III. Each participant produced three samples of diadochokinetic syllables. Syllable rate, syllable and vowel duration, VOT, and F0 were obtained. The diadochokinetic syllables were rated for articulatory accuracy and speaking rate. Twenty graduate clinicians served as judges. The samples were randomly presented via headphones. A mixed ANOVA with repeated measures was used to assess the significance of the changes in UPRS-III scores and speech measures. The results indicated that unilateral STN DBS produced improvement in nonspeech motor function regardless of the side of stimulation. In contrast, the changes in articulatory accuracy and syllable rate associated with the STN DBS were hemisphere specific.