A PHYSIOLOGIST'S PERSPECTIVE ON ROBOTIC EXOSKELETONS FOR HUMAN LOCOMOTION.

IF 0.9 4区 计算机科学 Q4 ROBOTICS
Daniel P Ferris, Gregory S Sawicki, Monica A Daley
{"title":"A PHYSIOLOGIST'S PERSPECTIVE ON ROBOTIC EXOSKELETONS FOR HUMAN LOCOMOTION.","authors":"Daniel P Ferris, Gregory S Sawicki, Monica A Daley","doi":"10.1142/S0219843607001138","DOIUrl":null,"url":null,"abstract":"Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: 1) reduction in the metabolic energy expenditure of the user while wearing the device, and 2) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion.","PeriodicalId":50319,"journal":{"name":"International Journal of Humanoid Robotics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219843607001138","citationCount":"193","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Humanoid Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0219843607001138","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 193

Abstract

Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: 1) reduction in the metabolic energy expenditure of the user while wearing the device, and 2) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion.
生理学家对人类运动机器人外骨骼的看法。
机器人硬件和软件的技术进步使动力外骨骼从科幻小说走向现实世界。本文的目的是强调未来研究的两个要点。首先,未来设备的设计可以通过利用动物运动的生物力学原理来改进。外骨骼研究的两个目标尤其可以从额外的生理学角度受益:1)减少用户佩戴设备时的代谢能量消耗,2)最小化驱动外骨骼的功率需求。其次,机器人外骨骼具有相互作用的潜力,可以促进我们对人类运动生理学的理解。人类在机器人外骨骼上行走和跑步的实验数据可以为运动的代谢成本提供重要的见解,这是其他方法无法获得的。考虑到合作的共同利益,工程师和生理学家在未来的人类运动机器人外骨骼研究中合作是势在必行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Humanoid Robotics
International Journal of Humanoid Robotics 工程技术-机器人学
CiteScore
3.50
自引率
13.30%
发文量
29
审稿时长
6 months
期刊介绍: The International Journal of Humanoid Robotics (IJHR) covers all subjects on the mind and body of humanoid robots. It is dedicated to advancing new theories, new techniques, and new implementations contributing to the successful achievement of future robots which not only imitate human beings, but also serve human beings. While IJHR encourages the contribution of original papers which are solidly grounded on proven theories or experimental procedures, the journal also encourages the contribution of innovative papers which venture into the new, frontier areas in robotics. Such papers need not necessarily demonstrate, in the early stages of research and development, the full potential of new findings on a physical or virtual robot. IJHR welcomes original papers in the following categories: Research papers, which disseminate scientific findings contributing to solving technical issues underlying the development of humanoid robots, or biologically-inspired robots, having multiple functionality related to either physical capabilities (i.e. motion) or mental capabilities (i.e. intelligence) Review articles, which describe, in non-technical terms, the latest in basic theories, principles, and algorithmic solutions Short articles (e.g. feature articles and dialogues), which discuss the latest significant achievements and the future trends in robotics R&D Papers on curriculum development in humanoid robot education Book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信