{"title":"Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in the ferret.","authors":"Farran Briggs, W Martin Usrey","doi":"10.1017/S1472928807000131","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the temporal properties of geniculocortical and corticogeniculate (CG) pathways that link the lateral geniculate nucleus (LGN) and primary visual cortex in the ferret. Using electrical stimulation in the LGN to evoke action potentials in geniculocortical and CG axons, results show that conduction latencies are significantly faster in geniculocortical neurons than in CG neurons. Within each pathway, axonal latency and visual physiology support the view of sub-classes of neurons. By examining the timing of visual responses and the latency of CG feedback, estimates indicate that visual information can reach the cortex and return to the LGN as early as 60 msec following the onset of a visual stimulus. These findings place constraints on the functional role of corticogeniculate feedback for visual processing.</p>","PeriodicalId":74923,"journal":{"name":"Thalamus & related systems","volume":" ","pages":"133-139"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1472928807000131","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalamus & related systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1472928807000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This study examines the temporal properties of geniculocortical and corticogeniculate (CG) pathways that link the lateral geniculate nucleus (LGN) and primary visual cortex in the ferret. Using electrical stimulation in the LGN to evoke action potentials in geniculocortical and CG axons, results show that conduction latencies are significantly faster in geniculocortical neurons than in CG neurons. Within each pathway, axonal latency and visual physiology support the view of sub-classes of neurons. By examining the timing of visual responses and the latency of CG feedback, estimates indicate that visual information can reach the cortex and return to the LGN as early as 60 msec following the onset of a visual stimulus. These findings place constraints on the functional role of corticogeniculate feedback for visual processing.