[The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply].

植物生理与分子生物学学报 Pub Date : 2007-10-01
Jun Xiong, Hai-Bin Wang, Chang-Xun Fang, Long Qiu, Wen-Xiang Wu, Hai-Bin He, Wen-Xiong Lin
{"title":"[The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply].","authors":"Jun Xiong,&nbsp;Hai-Bin Wang,&nbsp;Chang-Xun Fang,&nbsp;Long Qiu,&nbsp;Wen-Xiang Wu,&nbsp;Hai-Bin He,&nbsp;Wen-Xiong Lin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Differential expression of the key genes controlling phenolic metabolism in allelopathic and non-allelopathic rice accessions was investigated under two nitrogen supply levels (lower and normal) using fluorescence quantitative-polymerase chain reaction (FQ-PCR) (Figs.2, 3). The results indicated that 9 key enzyme genes concerned were mediated by lower nitrogen level (Table 2). All of the nine genes (Table 1, Fig.4), were up-regulated by 1.9-5.4 times of the relative gene expression amounts in allelopathic rice accession, 'PI312777' under the lower nitrogen condition compared with their controls, of which PAL gene showed the highest relative gene expression amount with 5.4 times of the relative gene expressions compared with the control, while in non-allelopathic rice Lemont, seven genes were down-regulated by 29%-72% under lower nitrogen supplies compared with their controls and only two genes, i.e., phenylalanine ammonia-lyase and cinnamoyl-CoA genes were up-regulated, which however were a decrease of 22% and 74% over those in allelopathic rice accession (Table 2). These findings strongly suggest that the increase of allelopathic potential induced by 1/4 nutrient stress was responsible for enhanced phenolic compound synthesis metabolism.</p>","PeriodicalId":64030,"journal":{"name":"植物生理与分子生物学学报","volume":"33 5","pages":"387-94"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"植物生理与分子生物学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Differential expression of the key genes controlling phenolic metabolism in allelopathic and non-allelopathic rice accessions was investigated under two nitrogen supply levels (lower and normal) using fluorescence quantitative-polymerase chain reaction (FQ-PCR) (Figs.2, 3). The results indicated that 9 key enzyme genes concerned were mediated by lower nitrogen level (Table 2). All of the nine genes (Table 1, Fig.4), were up-regulated by 1.9-5.4 times of the relative gene expression amounts in allelopathic rice accession, 'PI312777' under the lower nitrogen condition compared with their controls, of which PAL gene showed the highest relative gene expression amount with 5.4 times of the relative gene expressions compared with the control, while in non-allelopathic rice Lemont, seven genes were down-regulated by 29%-72% under lower nitrogen supplies compared with their controls and only two genes, i.e., phenylalanine ammonia-lyase and cinnamoyl-CoA genes were up-regulated, which however were a decrease of 22% and 74% over those in allelopathic rice accession (Table 2). These findings strongly suggest that the increase of allelopathic potential induced by 1/4 nutrient stress was responsible for enhanced phenolic compound synthesis metabolism.

[不同供氮条件下水稻酚类化合物代谢关键酶基因的差异表达]。
利用荧光定量聚合酶链反应(FQ-PCR)研究了化感和非化感水稻在低氮和正常氮两种供氮水平下控制酚代谢关键基因的差异表达(图2、3)。结果表明,低氮水平介导了9个相关关键酶基因的表达(表2)。在低氮条件下,化感水稻品种‘PI312777’的相对基因表达量上调了1.9 ~ 5.4倍,其中PAL基因的相对基因表达量最高,为对照的5.4倍;而在非化感水稻品种Lemont中,7个基因在低氮条件下较对照下调了29% ~ 72%,只有2个基因下调,分别为:苯丙氨酸解氨酶和肉桂酰辅酶a基因上调,但与化感水稻相比分别降低了22%和74%(表2)。这些结果强烈表明,1/4营养胁迫诱导化感电位的增加是酚类化合物合成代谢增强的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
816
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信