{"title":"A grammar based methodology for structural motif finding in ncRNA database search.","authors":"Daniel Quest, William Tapprich, Hesham Ali","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, sequence database searching has been conducted through local alignment heuristics, pattern-matching, and comparison of short statistically significant patterns. While these approaches have unlocked many clues as to sequence relationships, they are limited in that they do not provide context-sensitive searching capabilities (e.g. considering pseudoknots, protein binding positions, and complementary base pairs). Stochastic grammars (hidden Markov models HMMs and stochastic context-free grammars SCFG) do allow for flexibility in terms of local context, but the context comes at the cost of increased computational complexity. In this paper we introduce a new grammar based method for searching for RNA motifs that exist within a conserved RNA structure. Our method constrains computational complexity by using a chain of topology elements. Through the use of a case study we present the algorithmic approach and benchmark our approach against traditional methods.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":" ","pages":"215-25"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, sequence database searching has been conducted through local alignment heuristics, pattern-matching, and comparison of short statistically significant patterns. While these approaches have unlocked many clues as to sequence relationships, they are limited in that they do not provide context-sensitive searching capabilities (e.g. considering pseudoknots, protein binding positions, and complementary base pairs). Stochastic grammars (hidden Markov models HMMs and stochastic context-free grammars SCFG) do allow for flexibility in terms of local context, but the context comes at the cost of increased computational complexity. In this paper we introduce a new grammar based method for searching for RNA motifs that exist within a conserved RNA structure. Our method constrains computational complexity by using a chain of topology elements. Through the use of a case study we present the algorithmic approach and benchmark our approach against traditional methods.