A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.

Karim Azer, Charles S Peskin
{"title":"A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.","authors":"Karim Azer,&nbsp;Charles S Peskin","doi":"10.1007/s10558-007-9031-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a one-dimensional model for blood flow in arteries, without assuming an a priori shape for the velocity profile across an artery (Azer, Ph.D. thesis, Courant Institute, New York University, 2006). We combine the one-dimensional equations for conservation of mass and momentum with the Womersley model for the velocity profile in an iterative way. The pressure gradient of the one-dimensional model drives the Womersley equations, and the velocity profiles calculated then feed back into both the friction and nonlinear parts of the one-dimensional model. Besides enabling us to evaluate the friction correctly and also to use the velocity profile to correct the nonlinear terms, having the velocity profile available as output should be useful in a variety of applications. We present flow simulations using both structured trees and pure resistance models for the small arteries, and compare the resulting flow and pressure waves under various friction models. Moreover, we show how to couple the one-dimensional equations with the Taylor diffusion limit (Azer, Int J Heat Mass Transfer 2005;48:2735-40; Taylor, Proc R Soc Lond Ser A 1953;219:186-203) of the convection-diffusion equations to drive the concentration of a solute along an artery in time.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"7 2","pages":"51-73"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-007-9031-y","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-007-9031-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

In this paper, we present a one-dimensional model for blood flow in arteries, without assuming an a priori shape for the velocity profile across an artery (Azer, Ph.D. thesis, Courant Institute, New York University, 2006). We combine the one-dimensional equations for conservation of mass and momentum with the Womersley model for the velocity profile in an iterative way. The pressure gradient of the one-dimensional model drives the Womersley equations, and the velocity profiles calculated then feed back into both the friction and nonlinear parts of the one-dimensional model. Besides enabling us to evaluate the friction correctly and also to use the velocity profile to correct the nonlinear terms, having the velocity profile available as output should be useful in a variety of applications. We present flow simulations using both structured trees and pure resistance models for the small arteries, and compare the resulting flow and pressure waves under various friction models. Moreover, we show how to couple the one-dimensional equations with the Taylor diffusion limit (Azer, Int J Heat Mass Transfer 2005;48:2735-40; Taylor, Proc R Soc Lond Ser A 1953;219:186-203) of the convection-diffusion equations to drive the concentration of a solute along an artery in time.

基于沃默斯利速度剖面的动脉中有摩擦和对流的一维血流模型。
在本文中,我们提出了动脉血流的一维模型,而没有假设动脉流速剖面的先验形状(Azer,博士论文,纽约大学Courant研究所,2006)。我们以迭代的方式将质量和动量守恒的一维方程与速度剖面的沃默斯利模型结合起来。一维模型的压力梯度驱动Womersley方程,计算得到的速度分布反馈到一维模型的摩擦部分和非线性部分。除了使我们能够正确地评估摩擦,还可以使用速度剖面来纠正非线性项,在各种应用中,将速度剖面作为输出应该是有用的。我们采用结构树模型和纯阻力模型对小动脉进行了流动模拟,并比较了不同摩擦模型下的流动和压力波。此外,我们展示了如何将一维方程与泰勒扩散极限耦合(Azer, Int J Heat Mass Transfer 2005;48:2735-40;Taylor, Proc R Soc long Ser A 1953;219:186-203)的对流-扩散方程在时间上驱动溶质浓度沿动脉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信