{"title":"Calcium dynamics: spatio-temporal organization from the subcellular to the organ level.","authors":"Geneviève Dupont, Laurent Combettes, Luc Leybaert","doi":"10.1016/S0074-7696(07)61005-5","DOIUrl":null,"url":null,"abstract":"<p><p>Many essential physiological processes are controlled by calcium. To ensure reliability and specificity, calcium signals are highly organized in time and space in the form of oscillations and waves. Interesting findings have been obtained at various scales, ranging from the stochastic opening of a single calcium channel to the intercellular calcium wave spreading through an entire organ. A detailed understanding of calcium dynamics thus requires a link between observations at different scales. It appears that some regulations such as calcium-induced calcium release or PLC activation by calcium, as well as the weak diffusibility of calcium ions play a role at all levels of organization in most cell types. To comprehend how calcium waves spread from one cell to another, specific gap-junctional coupling and paracrine signaling must also be taken into account. On the basis of a pluridisciplinar approach ranging from physics to physiology, a unified description of calcium dynamics is emerging, which could help understanding how such a small ion can mediate so many vital functions in living systems.</p>","PeriodicalId":54930,"journal":{"name":"International Review of Cytology-A Survey of Cell Biology","volume":"261 ","pages":"193-245"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0074-7696(07)61005-5","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Cytology-A Survey of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0074-7696(07)61005-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113
Abstract
Many essential physiological processes are controlled by calcium. To ensure reliability and specificity, calcium signals are highly organized in time and space in the form of oscillations and waves. Interesting findings have been obtained at various scales, ranging from the stochastic opening of a single calcium channel to the intercellular calcium wave spreading through an entire organ. A detailed understanding of calcium dynamics thus requires a link between observations at different scales. It appears that some regulations such as calcium-induced calcium release or PLC activation by calcium, as well as the weak diffusibility of calcium ions play a role at all levels of organization in most cell types. To comprehend how calcium waves spread from one cell to another, specific gap-junctional coupling and paracrine signaling must also be taken into account. On the basis of a pluridisciplinar approach ranging from physics to physiology, a unified description of calcium dynamics is emerging, which could help understanding how such a small ion can mediate so many vital functions in living systems.