Fang Wang , Tingting Wang , Junyu Lang, Yiguo Su, Xiaojing Wang
{"title":"Improved photocatalytic activity and durability of AgTaO3/AgBr heterojunction: The relevance of phase and electronic structure","authors":"Fang Wang , Tingting Wang , Junyu Lang, Yiguo Su, Xiaojing Wang","doi":"10.1016/j.molcata.2016.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>AgTaO<sub>3</sub>/AgBr heterojunction was constructed for visible light driven photocatalytic purpose in order to investigate the relevance of phase conversion, electronic structure and photocatalytic properties. The result indicated that AgBr grafted on AgTaO<sub>3</sub> to form AgTaO<sub>3</sub>/AgBr heterojunction gave intense visible light absorption, which exhibits highly enhanced photocatalytic performance than their individual counterpart. Theoretical and experimental investigation showed that the matched electronic structure between AgTaO<sub>3</sub> and AgBr induced an efficient transfer of photogenerated electrons from AgBr to AgTaO<sub>3</sub>, leading to efficient charge separation and the subsequent improved photocatalytic activity. Partial AgBr converted to AgBr/Ag during the photocatalytic process, leading to the construction of ternary AgTaO<sub>3</sub>/AgBr/Ag photocatalyst. Because of the surface plasmon resonance effect of Ag, the resulting AgTaO<sub>3</sub>/AgBr/Ag exhibited wide range absorption and improved charge separation efficiency, which showed high durability and superior photocatalytic activity toward methyl orange degradation. On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated electrons, O<sub>2</sub><sup>−</sup><img>, and OH<img> active species dominate the photodegradation of methyl orange.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 52-59"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.001","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
AgTaO3/AgBr heterojunction was constructed for visible light driven photocatalytic purpose in order to investigate the relevance of phase conversion, electronic structure and photocatalytic properties. The result indicated that AgBr grafted on AgTaO3 to form AgTaO3/AgBr heterojunction gave intense visible light absorption, which exhibits highly enhanced photocatalytic performance than their individual counterpart. Theoretical and experimental investigation showed that the matched electronic structure between AgTaO3 and AgBr induced an efficient transfer of photogenerated electrons from AgBr to AgTaO3, leading to efficient charge separation and the subsequent improved photocatalytic activity. Partial AgBr converted to AgBr/Ag during the photocatalytic process, leading to the construction of ternary AgTaO3/AgBr/Ag photocatalyst. Because of the surface plasmon resonance effect of Ag, the resulting AgTaO3/AgBr/Ag exhibited wide range absorption and improved charge separation efficiency, which showed high durability and superior photocatalytic activity toward methyl orange degradation. On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated electrons, O2−, and OH active species dominate the photodegradation of methyl orange.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.