Predictive modeling of genome-wide mRNA expression: from modules to molecules.

Harmen J Bussemaker, Barrett C Foat, Lucas D Ward
{"title":"Predictive modeling of genome-wide mRNA expression: from modules to molecules.","authors":"Harmen J Bussemaker,&nbsp;Barrett C Foat,&nbsp;Lucas D Ward","doi":"10.1146/annurev.biophys.36.040306.132725","DOIUrl":null,"url":null,"abstract":"<p><p>Various algorithms are available for predicting mRNA expression and modeling gene regulatory processes. They differ in whether they rely on the existence of modules of coregulated genes or build a model that applies to all genes, whether they represent regulatory activities as hidden variables or as mRNA levels, and whether they implicitly or explicitly model the complex cis-regulatory logic of multiple interacting transcription factors binding the same DNA. The fact that functional genomics data of different types reflect the same molecular processes provides a natural strategy for integrative computational analysis. One promising avenue toward an accurate and comprehensive model of gene regulation combines biophysical modeling of the interactions among proteins, DNA, and RNA with the use of large-scale functional genomics data to estimate regulatory network connectivity and activity parameters. As the ability of these models to represent complex cis-regulatory logic increases, the need for approaches based on cross-species conservation may diminish.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"36 ","pages":"329-47"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.36.040306.132725","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.36.040306.132725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Various algorithms are available for predicting mRNA expression and modeling gene regulatory processes. They differ in whether they rely on the existence of modules of coregulated genes or build a model that applies to all genes, whether they represent regulatory activities as hidden variables or as mRNA levels, and whether they implicitly or explicitly model the complex cis-regulatory logic of multiple interacting transcription factors binding the same DNA. The fact that functional genomics data of different types reflect the same molecular processes provides a natural strategy for integrative computational analysis. One promising avenue toward an accurate and comprehensive model of gene regulation combines biophysical modeling of the interactions among proteins, DNA, and RNA with the use of large-scale functional genomics data to estimate regulatory network connectivity and activity parameters. As the ability of these models to represent complex cis-regulatory logic increases, the need for approaches based on cross-species conservation may diminish.

全基因组mRNA表达的预测建模:从模块到分子。
各种算法可用于预测mRNA表达和模拟基因调控过程。它们的不同之处在于,它们是依赖于共调控基因模块的存在,还是建立一个适用于所有基因的模型,它们是将调控活动表示为隐藏变量还是mRNA水平,以及它们是隐式还是显式地模拟多个相互作用的转录因子结合同一DNA的复杂顺式调控逻辑。不同类型的功能基因组数据反映相同的分子过程,这一事实为综合计算分析提供了一种自然的策略。建立准确而全面的基因调控模型的一个有希望的途径是将蛋白质、DNA和RNA之间相互作用的生物物理模型与使用大规模功能基因组学数据来估计调控网络连通性和活性参数相结合。随着这些模型表示复杂顺调控逻辑的能力的增加,对基于跨物种保护的方法的需求可能会减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信