Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1.

Fumiaki Takeuchi, Tsuyoshi Sugio
{"title":"Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1.","authors":"Fumiaki Takeuchi,&nbsp;Tsuyoshi Sugio","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100% of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.</p>","PeriodicalId":87178,"journal":{"name":"Environmental sciences : an international journal of environmental physiology and toxicology","volume":"13 6","pages":"305-16"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental sciences : an international journal of environmental physiology and toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100% of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.

利用抗汞酸性氧化亚铁硫杆菌SUG -2和MON-1菌株从汞污染的土壤和废水中挥发和回收汞。
氧化铁硫杆菌(Acidithiobacillus ferrooxidans)是生物浸出铜、金矿石的重要细菌之一。为了利用氧化亚铁杆菌的降汞活性对汞进行生物修复,从自然环境中分离的150株铁氧化细菌中筛选出耐汞氧化亚铁杆菌SUG 2-2和MON-1菌株。结果发现,菌株SUG 2-2和MON-1具有新的亚铁依赖性汞挥发活性和nadph依赖性汞还原酶活性。菌株MON-1具有有机溶酶样活性,在含0.1 μ m对氯霉素苯甲酸的铁培养基中生长最快。在含亚铁的酸化水(pH 2.5)中培养SUG 2-2或MON-1细胞,可将受汞污染的土壤或汞废水中近100%的汞挥发并回收,这表明这些抗汞菌株可用于无机和有机汞化合物的生物修复。我们首次证明了固定在聚乙烯醇(PVA)树脂中的MON-1细胞可以有效地挥发2 L含40微米汞(2+)和亚铁的合成汞污染废水(pH 2.5)中的汞。对mon -1固定化PVA树脂进行了重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信