Growth Factors and Stroke

David A. Greenberg, Kunlin Jin
{"title":"Growth Factors and Stroke","authors":"David A. Greenberg,&nbsp;Kunlin Jin","doi":"10.1016/j.nurx.2006.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Current options for the treatment of stroke are extremely limited, partly because of the rapidity with which brain cells die when deprived of their blood supply. Several recent studies suggest that growth factors can produce improvement in animal models of stroke, even when administered at postischemic intervals of many hours to days, when conventional neuroprotective approaches are typically futile. Several growth factors can access the brain after systemic administration, making them more attractive as therapeutic agents. Finally, growth factors are key mediators of neurogenesis in the adult brain, which could have a role in brain repair and functional recovery following stroke.</p></div>","PeriodicalId":87195,"journal":{"name":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","volume":"3 4","pages":"Pages 458-465"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nurx.2006.08.003","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1545534306001374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Current options for the treatment of stroke are extremely limited, partly because of the rapidity with which brain cells die when deprived of their blood supply. Several recent studies suggest that growth factors can produce improvement in animal models of stroke, even when administered at postischemic intervals of many hours to days, when conventional neuroprotective approaches are typically futile. Several growth factors can access the brain after systemic administration, making them more attractive as therapeutic agents. Finally, growth factors are key mediators of neurogenesis in the adult brain, which could have a role in brain repair and functional recovery following stroke.

生长因子与中风
目前治疗中风的方法非常有限,部分原因是当血液供应被剥夺时,脑细胞会迅速死亡。最近的几项研究表明,生长因子可以改善中风动物模型,即使是在发病后间隔数小时到数天的时间内给药,而传统的神经保护方法通常是无效的。一些生长因子在全身给药后可以进入大脑,这使得它们作为治疗药物更有吸引力。最后,生长因子是成人大脑神经发生的关键介质,可能在脑卒中后的脑修复和功能恢复中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信