{"title":"Using chemical reaction network theory to discard a kinetic mechanism hypothesis.","authors":"C Conradi, J Saez-Rodriguez, E D Gilles, J Raisch","doi":"10.1049/ip-syb:20050045","DOIUrl":null,"url":null,"abstract":"<p><p>Feinberg's chemical reaction network theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. No information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare. To demonstrate the potential benefits from its application, different reaction networks representing a single layer of the well-studied mitogen-activated protein kinase (MAPK) cascade are analysed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity, even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"152 4","pages":"243-8"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050045","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
Feinberg's chemical reaction network theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. No information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare. To demonstrate the potential benefits from its application, different reaction networks representing a single layer of the well-studied mitogen-activated protein kinase (MAPK) cascade are analysed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity, even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level.