Richard A. Wilhelm , Ayman S. El-Said , Franciszek Krok , René Heller , Elisabeth Gruber , Friedrich Aumayr , Stefan Facsko
{"title":"Highly charged ion induced nanostructures at surfaces by strong electronic excitations","authors":"Richard A. Wilhelm , Ayman S. El-Said , Franciszek Krok , René Heller , Elisabeth Gruber , Friedrich Aumayr , Stefan Facsko","doi":"10.1016/j.progsurf.2015.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nanostructure<span> formation by single slow highly charged ion impacts<span> can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light </span></span></span>ion irradiation<span><span> of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary </span>electron emission of highly charged ions clearly show that the </span></span>ion charge dominates the defect formation at the surface.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"90 3","pages":"Pages 377-395"},"PeriodicalIF":8.7000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2015.06.001","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681615000210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 29
Abstract
Nanostructure formation by single slow highly charged ion impacts can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light ion irradiation of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion charge dominates the defect formation at the surface.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.