Non-adiabatic effects in elementary reaction processes at metal surfaces

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
M. Alducin , R. Díez Muiño , J.I. Juaristi
{"title":"Non-adiabatic effects in elementary reaction processes at metal surfaces","authors":"M. Alducin ,&nbsp;R. Díez Muiño ,&nbsp;J.I. Juaristi","doi":"10.1016/j.progsurf.2017.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"92 4","pages":"Pages 317-340"},"PeriodicalIF":8.7000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2017.09.002","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681617300230","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 68

Abstract

Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.

金属表面基本反应过程中的非绝热效应
用玻恩-奥本海默近似模拟气表面基本过程取得了很大的成功。然而,在金属表面,由于电子结构中没有带隙,即使是热和高温分子也会产生低能电子激发。这表明进行包含非绝热效应的动力学模拟以分析它们以何种方式影响最常见的气表面反应的重要性。在此,我们回顾了该问题的最新理论进展,以及它们在研究电子激发在金属表面原子和分子的吸附和弛豫、散射过程以及表面碰撞原子和吸附剂之间的重组过程中的影响方面的应用。这些研究有助于我们确定气体表面相互作用的哪些性质有利于低能电子-空穴对的激发。一般的观察是,这些激发的性质通常需要在表面上持久的相互作用,以便观察到与绝热行为的偏差。我们还提供了在所有这些研究中使用的局部密度摩擦近似(LDFA)的基础,并展示了如何使用它来执行从头算分子动力学与电子摩擦(AIMDEF)。最后,我们将简要回顾LDFA在成功模拟强飞秒激光脉冲引起的解吸过程中的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信