Structure-magnetic property relations in FeNbO4 polymorphs: A spin glass perspective

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
N. Lakshminarasimhan , A.K. Nanda Kumar , S. Selva Chandrasekaran , P. Murugan
{"title":"Structure-magnetic property relations in FeNbO4 polymorphs: A spin glass perspective","authors":"N. Lakshminarasimhan ,&nbsp;A.K. Nanda Kumar ,&nbsp;S. Selva Chandrasekaran ,&nbsp;P. Murugan","doi":"10.1016/j.progsolidstchem.2019.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Spin glass state originating from the magnetic frustration due to the geometric arrangement or cation disorder is an interesting topic of research. FeNbO<sub>4</sub>, exhibiting multifarious applications, crystallizes mainly in three different polymorphic forms with cation ordered and disordered structures. Despite their antiferromagnetic nature, the orthorhombic (<em>o</em>-FeNbO<sub>4</sub>) and monoclinic FeNbO<sub>4</sub> (<em>m</em>-FeNbO<sub>4</sub><span>) polymorphs exhibit a difference in their magnetic properties at low temperatures. Here, we report our observation of spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub> with a cation disordered structure. Our work is a combined experimental and theoretical study of structure-magnetic property relations of the antiferromagnetic <em>o</em>- and <em>m</em>-FeNbO<sub>4</sub><span> with the Néel temperatures of 30 and 46 K, respectively. </span><em>o</em>-FeNbO<sub>4</sub> contrasted itself from <em>m</em>-FeNbO<sub>4</sub><span><span> as a spin glass by exhibiting field-dependent bifurcation in ZFC and FC magnetization, frequency-dependent AC susceptibility, memory effect, thermoremanence, and anamoly in the heat capacity. The presence of antiphase domains and boundaries due to cation order/disorder in both the structural polymorphs was evidenced from the electron diffraction analyses that account for the observed low temperature magnetic interactions. Further, modeling the structures with varying amounts of cation disorder using </span>first principles calculations revealed the structural stability and competing spin interactions that support our experimentally observed spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub>.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"54 ","pages":"Pages 20-30"},"PeriodicalIF":9.1000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.03.001","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678619300019","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 12

Abstract

Spin glass state originating from the magnetic frustration due to the geometric arrangement or cation disorder is an interesting topic of research. FeNbO4, exhibiting multifarious applications, crystallizes mainly in three different polymorphic forms with cation ordered and disordered structures. Despite their antiferromagnetic nature, the orthorhombic (o-FeNbO4) and monoclinic FeNbO4 (m-FeNbO4) polymorphs exhibit a difference in their magnetic properties at low temperatures. Here, we report our observation of spin glass behaviour of o-FeNbO4 with a cation disordered structure. Our work is a combined experimental and theoretical study of structure-magnetic property relations of the antiferromagnetic o- and m-FeNbO4 with the Néel temperatures of 30 and 46 K, respectively. o-FeNbO4 contrasted itself from m-FeNbO4 as a spin glass by exhibiting field-dependent bifurcation in ZFC and FC magnetization, frequency-dependent AC susceptibility, memory effect, thermoremanence, and anamoly in the heat capacity. The presence of antiphase domains and boundaries due to cation order/disorder in both the structural polymorphs was evidenced from the electron diffraction analyses that account for the observed low temperature magnetic interactions. Further, modeling the structures with varying amounts of cation disorder using first principles calculations revealed the structural stability and competing spin interactions that support our experimentally observed spin glass behaviour of o-FeNbO4.

Abstract Image

FeNbO4多晶的结构-磁性关系:自旋玻璃视角
自旋玻璃态是由几何排列或阳离子无序引起的磁受挫引起的,是一个有趣的研究课题。FeNbO4主要以三种不同的多晶形式结晶,具有阳离子有序和无序结构,具有多种应用。尽管具有反铁磁性,但正交晶型(o-FeNbO4)和单斜晶型(m-FeNbO4)在低温下表现出不同的磁性。在这里,我们报告了我们对具有阳离子无序结构的o-FeNbO4的自旋玻璃行为的观察。我们的工作是结合实验和理论研究反铁磁性o-和m-FeNbO4在n温度分别为30和46 K时的结构-磁性关系。作为自旋玻璃,o-FeNbO4与m-FeNbO4相比,表现出ZFC和FC磁化的场相关分岔、频率相关的交流磁化率、记忆效应、导热性和热容的异常。电子衍射分析证明了两种结构多晶中存在由阳离子有序/无序引起的反相畴和边界,这解释了观察到的低温磁相互作用。此外,利用第一性原理计算对具有不同数量阳离子无序的结构进行建模,揭示了结构稳定性和竞争自旋相互作用,支持我们实验观察到的o-FeNbO4的自旋玻璃行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信