Jerry Robert Smith, Harish V Thiagaraj, Benjamin Seaver, Keith K Parker
{"title":"Differential activity of lipoic acid enantiomers in cell culture.","authors":"Jerry Robert Smith, Harish V Thiagaraj, Benjamin Seaver, Keith K Parker","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It is unclear whether the two enantiomeric forms (R & S) of lipoic acid (LA) share similar pharmacological activity and the exact cellular targets of LA are not well identified. We oxidatively stressed 3 cell culture systems representing different cell types. Mitochondrial metabolism was the primary endpoint. When C6 glioma was damaged by hydrogen peroxide (H2O2), all forms of LA protected. Racemic and S-LA were less effective than the R-isomer that was also protective in tertiary butyl hydroperoxide (TBHP)-damaged C6 glioma. In PC12 cells, little damage was produced by TBHP; R-LA increased mitochondrial metabolism above the level of non-damaged control. In H2O2 damaged PC12 cells, R-LA and racemic LA (but not S-LA) not only protected against damage, but increased mitochondrial metabolism above the non-damaged control level. When BAE cells were damaged with H2O2, R- and racemic LA protected while S-LA was ineffective.</p>","PeriodicalId":73776,"journal":{"name":"Journal of herbal pharmacotherapy","volume":"5 3","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of herbal pharmacotherapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is unclear whether the two enantiomeric forms (R & S) of lipoic acid (LA) share similar pharmacological activity and the exact cellular targets of LA are not well identified. We oxidatively stressed 3 cell culture systems representing different cell types. Mitochondrial metabolism was the primary endpoint. When C6 glioma was damaged by hydrogen peroxide (H2O2), all forms of LA protected. Racemic and S-LA were less effective than the R-isomer that was also protective in tertiary butyl hydroperoxide (TBHP)-damaged C6 glioma. In PC12 cells, little damage was produced by TBHP; R-LA increased mitochondrial metabolism above the level of non-damaged control. In H2O2 damaged PC12 cells, R-LA and racemic LA (but not S-LA) not only protected against damage, but increased mitochondrial metabolism above the non-damaged control level. When BAE cells were damaged with H2O2, R- and racemic LA protected while S-LA was ineffective.