Catherine M. Diaz-Asper, Daniel R. Weinberger, Terry E. Goldberg
{"title":"Catechol-O-Methyltransferase Polymorphisms and Some Implications for Cognitive Therapeutics","authors":"Catherine M. Diaz-Asper, Daniel R. Weinberger, Terry E. Goldberg","doi":"10.1016/j.nurx.2005.12.010","DOIUrl":null,"url":null,"abstract":"<div><p>Catechol-O-methyltransferase (COMT) is a gene involved in the degradation of dopamine and may both increase susceptibility to develop schizophrenia and affect neuronal functions involved in working memory. A common variant of the COMT gene (val<sup>108/158</sup>met) has been widely reported to affect prefrontally mediated working memory function, with the high-activity val allele associated with poorest performance across a number of tests sensitive to updating and target detection. Pharmacological manipulations of COMT val<sup>108/158</sup>met also have reliably produced alterations in cognitive function, in line with an inverted U function of prefrontal dopamine signaling. Furthermore, there is accumulating evidence that COMT val<sup>108/158</sup>met genotype may influence the cognitive response to antipsychotic treatment in schizophrenia patients, with met allele load predicting the greatest improvement with medication. Recently, other single-nucleotide polymorphisms (SNPs) across the COMT gene have emerged as possible risk alleles for schizophrenia, although little is known about whether they affect prefrontal cognition in a manner similar to COMT val<sup>108/158</sup>met. Preliminary evidence suggests a modest role for a SNP in the 5′ region of the gene on select tests of attention and target detection. Haplotype effects also may account for a modest percentage of the variance in test performance, and are an important area for future study.</p></div>","PeriodicalId":87195,"journal":{"name":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","volume":"3 1","pages":"Pages 97-105"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nurx.2005.12.010","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1545534305000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Catechol-O-methyltransferase (COMT) is a gene involved in the degradation of dopamine and may both increase susceptibility to develop schizophrenia and affect neuronal functions involved in working memory. A common variant of the COMT gene (val108/158met) has been widely reported to affect prefrontally mediated working memory function, with the high-activity val allele associated with poorest performance across a number of tests sensitive to updating and target detection. Pharmacological manipulations of COMT val108/158met also have reliably produced alterations in cognitive function, in line with an inverted U function of prefrontal dopamine signaling. Furthermore, there is accumulating evidence that COMT val108/158met genotype may influence the cognitive response to antipsychotic treatment in schizophrenia patients, with met allele load predicting the greatest improvement with medication. Recently, other single-nucleotide polymorphisms (SNPs) across the COMT gene have emerged as possible risk alleles for schizophrenia, although little is known about whether they affect prefrontal cognition in a manner similar to COMT val108/158met. Preliminary evidence suggests a modest role for a SNP in the 5′ region of the gene on select tests of attention and target detection. Haplotype effects also may account for a modest percentage of the variance in test performance, and are an important area for future study.