Haplotype association analysis of human disease traits using genotype data of unrelated individuals.

Qihua Tan, Lene Christiansen, Kaare Christensen, Lise Bathum, Shuxia Li, Jing Hua Zhao, Torben A Kruse
{"title":"Haplotype association analysis of human disease traits using genotype data of unrelated individuals.","authors":"Qihua Tan,&nbsp;Lene Christiansen,&nbsp;Kaare Christensen,&nbsp;Lise Bathum,&nbsp;Shuxia Li,&nbsp;Jing Hua Zhao,&nbsp;Torben A Kruse","doi":"10.1017/S0016672305007792","DOIUrl":null,"url":null,"abstract":"<p><p>Haplotype inference has become an important part of human genetic data analysis due to its functional and statistical advantages over the single-locus approach in linkage disequilibrium mapping. Different statistical methods have been proposed for detecting haplotype - disease associations using unphased multi-locus genotype data, ranging from the early approach by the simple gene-counting method to the recent work using the generalized linear model. However, these methods are either confined to case - control design or unable to yield unbiased point and interval estimates of haplotype effects. Based on the popular logistic regression model, we present a new approach for haplotype association analysis of human disease traits. Using haplotype-based parameterization, our model infers the effects of specific haplotypes (point estimation) and constructs confidence interval for the risks of haplotypes (interval estimation). Based on the estimated parameters, the model calculates haplotype frequency conditional on the trait value for both discrete and continuous traits. Moreover, our model provides an overall significance level for the association between the disease trait and a group or all of the haplotypes. Featured by the direct maximization in haplotype estimation, our method also facilitates a computer simulation approach for correcting the significance level of individual haplotype to adjust for multiple testing. We show, by applying the model to an empirical data set, that our method based on the well-known logistic regression model is a useful tool for haplotype association analysis of human disease traits.</p>","PeriodicalId":12777,"journal":{"name":"Genetical research","volume":"86 3","pages":"223-31"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0016672305007792","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0016672305007792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Haplotype inference has become an important part of human genetic data analysis due to its functional and statistical advantages over the single-locus approach in linkage disequilibrium mapping. Different statistical methods have been proposed for detecting haplotype - disease associations using unphased multi-locus genotype data, ranging from the early approach by the simple gene-counting method to the recent work using the generalized linear model. However, these methods are either confined to case - control design or unable to yield unbiased point and interval estimates of haplotype effects. Based on the popular logistic regression model, we present a new approach for haplotype association analysis of human disease traits. Using haplotype-based parameterization, our model infers the effects of specific haplotypes (point estimation) and constructs confidence interval for the risks of haplotypes (interval estimation). Based on the estimated parameters, the model calculates haplotype frequency conditional on the trait value for both discrete and continuous traits. Moreover, our model provides an overall significance level for the association between the disease trait and a group or all of the haplotypes. Featured by the direct maximization in haplotype estimation, our method also facilitates a computer simulation approach for correcting the significance level of individual haplotype to adjust for multiple testing. We show, by applying the model to an empirical data set, that our method based on the well-known logistic regression model is a useful tool for haplotype association analysis of human disease traits.

利用无亲缘关系个体基因型数据进行人类疾病性状的单倍型关联分析。
单倍型推断由于在功能和统计上优于单位点方法,在连锁不平衡定位方面已成为人类遗传数据分析的重要组成部分。从早期的简单基因计数方法到最近使用广义线性模型的工作,已经提出了不同的统计方法来检测单倍型-疾病关联,使用无阶段的多位点基因型数据。然而,这些方法要么局限于病例对照设计,要么无法产生单倍型效应的无偏点和区间估计。基于流行的逻辑回归模型,我们提出了一种新的人类疾病性状单倍型关联分析方法。利用基于单倍型的参数化,我们的模型推断了特定单倍型的影响(点估计),并构建了单倍型风险的置信区间(区间估计)。在估计参数的基础上,该模型根据离散性状和连续性状的性状值计算单倍型频率。此外,我们的模型为疾病性状与一组或所有单倍型之间的关联提供了总体显著性水平。该方法在单倍型估计中具有直接最大化的特点,也便于计算机模拟方法来校正单个单倍型的显著性水平,以适应多次测试。通过将该模型应用于经验数据集,我们表明,基于众所周知的逻辑回归模型的方法是人类疾病特征单倍型关联分析的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信