LOGOS: a modular Bayesian model for de novo motif detection.

Eric P Xing, Wei Wu, Michael I Jordan, Richard M Karp
{"title":"LOGOS: a modular Bayesian model for de novo motif detection.","authors":"Eric P Xing,&nbsp;Wei Wu,&nbsp;Michael I Jordan,&nbsp;Richard M Karp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of the global organization and internal structures of motifs in higher eukaryotic organisms raises significant challenges for motif detection techniques. To achieve successful de novo motif detection it is necessary to model the complex dependencies within and among motifs and incorporate biological prior knowledge. In this paper, we present LOGOS, an integrated LOcal and GlObal motif Sequence model for biopolymer sequences, which provides a principled framework for developing, modularizing, extending and computing expressive motif models for complex biopolymer sequence analysis. LOGOS consists of two interacting submodels: HMDM, a local alignment model capturing biological prior knowledge and positional dependence within the motif local structure; and HMM, a global motif distribution model modeling frequencies and dependencies of motif occurrences. Model parameters can be fit using training motifs within an empirical Bayesian framework. A variational EM algorithm is developed for de novo motif detection. LOGOS improves over existing models that ignore biological priors and dependencies in motif structures and motif occurrences, and demonstrates superior performance on both semi-realistic test data and cis-regulatory sequences from yeast and Drosophila sequences with regard to sensitivity, specificity, flexibility and extensibility.</p>","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"2 ","pages":"266-76"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of the global organization and internal structures of motifs in higher eukaryotic organisms raises significant challenges for motif detection techniques. To achieve successful de novo motif detection it is necessary to model the complex dependencies within and among motifs and incorporate biological prior knowledge. In this paper, we present LOGOS, an integrated LOcal and GlObal motif Sequence model for biopolymer sequences, which provides a principled framework for developing, modularizing, extending and computing expressive motif models for complex biopolymer sequence analysis. LOGOS consists of two interacting submodels: HMDM, a local alignment model capturing biological prior knowledge and positional dependence within the motif local structure; and HMM, a global motif distribution model modeling frequencies and dependencies of motif occurrences. Model parameters can be fit using training motifs within an empirical Bayesian framework. A variational EM algorithm is developed for de novo motif detection. LOGOS improves over existing models that ignore biological priors and dependencies in motif structures and motif occurrences, and demonstrates superior performance on both semi-realistic test data and cis-regulatory sequences from yeast and Drosophila sequences with regard to sensitivity, specificity, flexibility and extensibility.

LOGOS:用于从头基序检测的模块化贝叶斯模型。
高等真核生物中基序的整体组织和内部结构的复杂性对基序检测技术提出了重大挑战。为了实现成功的从头基序检测,有必要对基序内部和基序之间的复杂依赖关系进行建模,并纳入生物学先验知识。本文提出了生物聚合物序列的局部和全局基序模型LOGOS,它为复杂生物聚合物序列分析中表达基序模型的开发、模块化、扩展和计算提供了一个原则性框架。LOGOS由两个相互作用的子模型组成:HMDM,一个捕获生物先验知识和基序局部结构中的位置依赖的局部比对模型;HMM,一个全局基序分布模型,建模基序出现的频率和依赖关系。模型参数可以在经验贝叶斯框架内使用训练母题进行拟合。本文提出了一种变分EM算法用于从头基序检测。LOGOS改进了忽略基序结构和基序发生的生物学先验和依赖性的现有模型,并在半真实的测试数据和酵母和果蝇序列的顺式调控序列上展示了卓越的灵敏度、特异性、灵活性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信