Local similarity in RNA secondary structures.

Matthias Höchsmann, Thomas Töller, Robert Giegerich, Stefan Kurtz
{"title":"Local similarity in RNA secondary structures.","authors":"Matthias Höchsmann,&nbsp;Thomas Töller,&nbsp;Robert Giegerich,&nbsp;Stefan Kurtz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present a systematic treatment of alignment distance and local similarity algorithms on trees and forests. We build upon the tree alignment algorithm for ordered trees given by Jiang et. al (1995) and extend it to calculate local forest alignments, which is essential for finding local similar regions in RNA secondary structures. The time complexity of our algorithm is O(|F(1)| |F(2) deg(F(1)) deg(F(2)) (deg(F(1)) + deg(F(2))) where |F(i)| is the number of nodes in forest F(i) and deg (F(i)) is the degree of F(i). We provide carefully engineered dynamic programming implementations using dense, two-dimensional tables which considerably reduces the space requirement. We suggest a new representation of RNA secondary structures as forests that allow reasonable scoring of edit operations on RNA secondary structures. The comparison of RNA secondary structures is facilitated by a new visualization technique for RNA secondary structure alignments. Finally, we show how potential regulatory motifs can be discovered solely by their structural preservation, and independent of their sequence conservation and position.</p>","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"2 ","pages":"159-68"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a systematic treatment of alignment distance and local similarity algorithms on trees and forests. We build upon the tree alignment algorithm for ordered trees given by Jiang et. al (1995) and extend it to calculate local forest alignments, which is essential for finding local similar regions in RNA secondary structures. The time complexity of our algorithm is O(|F(1)| |F(2) deg(F(1)) deg(F(2)) (deg(F(1)) + deg(F(2))) where |F(i)| is the number of nodes in forest F(i) and deg (F(i)) is the degree of F(i). We provide carefully engineered dynamic programming implementations using dense, two-dimensional tables which considerably reduces the space requirement. We suggest a new representation of RNA secondary structures as forests that allow reasonable scoring of edit operations on RNA secondary structures. The comparison of RNA secondary structures is facilitated by a new visualization technique for RNA secondary structure alignments. Finally, we show how potential regulatory motifs can be discovered solely by their structural preservation, and independent of their sequence conservation and position.

RNA二级结构的局部相似性。
我们提出了一个系统的处理对准距离和局部相似算法的树木和森林。我们在Jiang等人(1995)给出的有序树的树对齐算法的基础上,将其扩展到计算局部森林对齐,这对于在RNA二级结构中寻找局部相似区域至关重要。我们算法的时间复杂度为O(|F(1)| |F(2) deg(F(1)) deg(F(2)) (deg(F(1)) + deg(F(2)),其中|F(i)|为森林F(i)的节点数,deg(F(i))为F(i)的度。我们提供精心设计的动态规划实现,使用密集的二维表,这大大减少了空间需求。我们建议将RNA二级结构表示为森林,允许对RNA二级结构的编辑操作进行合理评分。一种新的RNA二级结构比对可视化技术为RNA二级结构的比较提供了便利。最后,我们展示了潜在的调控基序是如何仅仅通过它们的结构保存来发现的,并且独立于它们的序列保存和位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信