On optimizing distance-based similarity search for biological databases.

Rui Mao, Weijia Xu, Smriti Ramakrishnan, Glen Nuckolls, Daniel P Miranker
{"title":"On optimizing distance-based similarity search for biological databases.","authors":"Rui Mao,&nbsp;Weijia Xu,&nbsp;Smriti Ramakrishnan,&nbsp;Glen Nuckolls,&nbsp;Daniel P Miranker","doi":"10.1109/csb.2005.42","DOIUrl":null,"url":null,"abstract":"<p><p>Similarity search leveraging distance-based index structures is increasingly being used for both multimedia and biological database applications. We consider distance-based indexing for three important biological data types, protein k-mers with the metric PAM model, DNA k-mers with Hamming distance and peptide fragmentation spectra with a pseudo-metric derived from cosine distance. To date, the primary driver of this research has been multimedia applications, where similarity functions are often Euclidean norms on high dimensional feature vectors. We develop results showing that the character of these biological workloads is different from multimedia workloads. In particular, they are not intrinsically very high dimensional, and deserving different optimization heuristics. Based on MVP-trees, we develop a pivot selection heuristic seeking centers and show it outperforms the most widely used corner seeking heuristic. Similarly, we develop a data partitioning approach sensitive to the actual data distribution in lieu of median splits.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"351-61"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.42","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Similarity search leveraging distance-based index structures is increasingly being used for both multimedia and biological database applications. We consider distance-based indexing for three important biological data types, protein k-mers with the metric PAM model, DNA k-mers with Hamming distance and peptide fragmentation spectra with a pseudo-metric derived from cosine distance. To date, the primary driver of this research has been multimedia applications, where similarity functions are often Euclidean norms on high dimensional feature vectors. We develop results showing that the character of these biological workloads is different from multimedia workloads. In particular, they are not intrinsically very high dimensional, and deserving different optimization heuristics. Based on MVP-trees, we develop a pivot selection heuristic seeking centers and show it outperforms the most widely used corner seeking heuristic. Similarly, we develop a data partitioning approach sensitive to the actual data distribution in lieu of median splits.

基于距离的生物数据库相似度搜索优化研究。
利用基于距离的索引结构的相似性搜索越来越多地用于多媒体和生物数据库应用程序。我们考虑了三种重要的生物数据类型的基于距离的索引,蛋白质k-mers与度量PAM模型,DNA k-mers与汉明距离和肽片段谱与余弦距离衍生的伪度量。迄今为止,该研究的主要驱动力是多媒体应用,其中相似函数通常是高维特征向量上的欧几里得范数。我们开发的结果表明,这些生物工作负载的特点不同于多媒体工作负载。特别是,它们本质上不是高维的,需要不同的优化启发式。在mvp树的基础上,我们开发了一种寻找中心的枢轴选择启发式算法,并证明它优于最广泛使用的角点搜索启发式算法。同样,我们开发了一种对实际数据分布敏感的数据分区方法,以代替中位数分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信