A robust meta-classification strategy for cancer diagnosis from gene expression data.

Gabriela Alexe, Gyan Bhanot, Babu Venkataraghavan, Ramakrishna Ramaswamy, Jorge Lepre, Arnold J Levine, Gustavo Stolovitzky
{"title":"A robust meta-classification strategy for cancer diagnosis from gene expression data.","authors":"Gabriela Alexe,&nbsp;Gyan Bhanot,&nbsp;Babu Venkataraghavan,&nbsp;Ramakrishna Ramaswamy,&nbsp;Jorge Lepre,&nbsp;Arnold J Levine,&nbsp;Gustavo Stolovitzky","doi":"10.1109/csb.2005.7","DOIUrl":null,"url":null,"abstract":"<p><p>One of the major challenges in cancer diagnosis from microarray data is to develop robust classification models which are independent of the analysis techniques used and can combine data from different laboratories. We propose a meta-classification scheme which uses a robust multivariate gene selection procedure and integrates the results of several machine learning tools trained on raw and pattern data. We validate our method by applying it to distinguish diffuse large B-cell lymphoma (DLBCL) from follicular lymphoma (FL) on two independent datasets: the HuGeneFL Affmetrixy dataset of Shipp et al. (www. genome.wi.mit.du/MPR /lymphoma) and the Hu95Av2 Affymetrix dataset (DallaFavera's laboratory, Columbia University). Our meta-classification technique achieves higher predictive accuracies than each of the individual classifiers trained on the same dataset and is robust against various data perturbations. We also find that combinations of p53 responsive genes (e.g., p53, PLK1 and CDK2) are highly predictive of the phenotype.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"322-5"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.7","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

One of the major challenges in cancer diagnosis from microarray data is to develop robust classification models which are independent of the analysis techniques used and can combine data from different laboratories. We propose a meta-classification scheme which uses a robust multivariate gene selection procedure and integrates the results of several machine learning tools trained on raw and pattern data. We validate our method by applying it to distinguish diffuse large B-cell lymphoma (DLBCL) from follicular lymphoma (FL) on two independent datasets: the HuGeneFL Affmetrixy dataset of Shipp et al. (www. genome.wi.mit.du/MPR /lymphoma) and the Hu95Av2 Affymetrix dataset (DallaFavera's laboratory, Columbia University). Our meta-classification technique achieves higher predictive accuracies than each of the individual classifiers trained on the same dataset and is robust against various data perturbations. We also find that combinations of p53 responsive genes (e.g., p53, PLK1 and CDK2) are highly predictive of the phenotype.

基于基因表达数据的癌症诊断的稳健元分类策略。
从微阵列数据进行癌症诊断的主要挑战之一是开发健壮的分类模型,该模型独立于所使用的分析技术,并且可以结合来自不同实验室的数据。我们提出了一种元分类方案,该方案使用稳健的多变量基因选择程序,并集成了几种机器学习工具在原始数据和模式数据上训练的结果。我们通过应用该方法在两个独立的数据集(Shipp等人的HuGeneFL Affmetrixy数据集)上区分弥漫性大b细胞淋巴瘤(DLBCL)和滤泡性淋巴瘤(FL)来验证我们的方法。genome.wi.mit。du/MPR /淋巴瘤)和Hu95Av2 Affymetrix数据集(DallaFavera实验室,哥伦比亚大学)。我们的元分类技术实现了比在同一数据集上训练的每个单独分类器更高的预测精度,并且对各种数据扰动具有鲁棒性。我们还发现p53应答基因(如p53、PLK1和CDK2)的组合可以高度预测表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信