Motif extraction and protein classification.

Vered Kunik, Zach Solan, Shimon Edelman, Eytan Ruppin, David Horn
{"title":"Motif extraction and protein classification.","authors":"Vered Kunik,&nbsp;Zach Solan,&nbsp;Shimon Edelman,&nbsp;Eytan Ruppin,&nbsp;David Horn","doi":"10.1109/csb.2005.39","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"80-5"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.39","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.

基序提取和蛋白质分类。
我们提出了一种新的从生物序列数据中提取有意义基序的无监督方法。这种从头开始的基序提取(MEX)算法是数据驱动的,可以找到不一定在数据中过度表示的基序。将MEX应用于含有大约7000个酶序列的氧化还原酶类酶,得到了相对较少的基序集。该集合跨越一个基元空间,用于支持向量机分类器对酶进行功能分类。基于MEX基序的分类优于其他两种基于SVM的方法:SVMProt,一种基于分析氨基酸序列生成的蛋白质的物理化学性质的方法,以及应用于Smith-Waterman距离矩阵的SVM。我们的研究结果表明,MEX算法提取相关的基序,支持成功的序列到功能分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信