Gridding and compression of microarray images.

Stefano Lonardi, Yu Luo
{"title":"Gridding and compression of microarray images.","authors":"Stefano Lonardi,&nbsp;Yu Luo","doi":"10.1109/csb.2004.1332424","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent explosion of interest in microarray technology, massive amounts of microarray images are currently being produced. The storage and the transmission of this type of data are becoming increasingly challenging. Here we propose lossless and lossy compression algorithms for microarray images originally digitized at 16 bpp (bits per pixels) that achieve an average of 9.5 - 11.5 bpp (lossless) and 4.6 - 6.7 bpp (lossy, with a PSNR of 63 dB). The lossy compression is applied only on the background of the image, thereby preserving the regions of interest. The methods are based on a completely automatic gridding procedure of the image.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"122-30"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332424","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent explosion of interest in microarray technology, massive amounts of microarray images are currently being produced. The storage and the transmission of this type of data are becoming increasingly challenging. Here we propose lossless and lossy compression algorithms for microarray images originally digitized at 16 bpp (bits per pixels) that achieve an average of 9.5 - 11.5 bpp (lossless) and 4.6 - 6.7 bpp (lossy, with a PSNR of 63 dB). The lossy compression is applied only on the background of the image, thereby preserving the regions of interest. The methods are based on a completely automatic gridding procedure of the image.

微阵列图像的网格化和压缩。
随着最近对微阵列技术的兴趣激增,目前正在生产大量的微阵列图像。这类数据的存储和传输正变得越来越具有挑战性。在这里,我们提出了原始以16 bpp(比特每像素)数字化的微阵列图像的无损和有损压缩算法,平均达到9.5 - 11.5 bpp(无损)和4.6 - 6.7 bpp(有损,PSNR为63 dB)。有损压缩仅应用于图像的背景,从而保留感兴趣的区域。该方法基于图像的完全自动网格化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信