Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.

Ryo Yoshida, Seiya Imoto, Tomoyuki Higuchi
{"title":"Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.","authors":"Ryo Yoshida,&nbsp;Seiya Imoto,&nbsp;Tomoyuki Higuchi","doi":"10.1109/csb.2005.32","DOIUrl":null,"url":null,"abstract":"<p><p>In gene network estimation from time series microarray data, dynamic models such as differential equations and dynamic Bayesian networks assume that the network structure is stable through all time points, while the real network might changes its structure depending on time, affection of some shocks and so on. If the true network structure underlying the data changes at certain points, the fitting of the usual dynamic linear models fails to estimate the structure of gene network and we cannot obtain efficient information from data. To solve this problem, we propose a dynamic linear model with Markov switching for estimating time-dependent gene network structure from time series gene expression data. Using our proposed method, the network structure between genes and its change points are automatically estimated. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle time series data.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"289-98"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.32","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

In gene network estimation from time series microarray data, dynamic models such as differential equations and dynamic Bayesian networks assume that the network structure is stable through all time points, while the real network might changes its structure depending on time, affection of some shocks and so on. If the true network structure underlying the data changes at certain points, the fitting of the usual dynamic linear models fails to estimate the structure of gene network and we cannot obtain efficient information from data. To solve this problem, we propose a dynamic linear model with Markov switching for estimating time-dependent gene network structure from time series gene expression data. Using our proposed method, the network structure between genes and its change points are automatically estimated. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle time series data.

基于马尔可夫切换的动态线性模型估计时间序列微阵列数据的时变基因网络。
在基于时间序列微阵列数据的基因网络估计中,微分方程和动态贝叶斯网络等动态模型假设网络结构在所有时间点都是稳定的,而真实网络可能会随着时间、某些冲击的影响等发生结构变化。如果数据背后的真实网络结构在某些点发生变化,通常的动态线性模型拟合无法估计基因网络的结构,无法从数据中获得有效的信息。为了解决这一问题,我们提出了一个带有马尔可夫切换的动态线性模型,用于从时间序列基因表达数据中估计时间相关的基因网络结构。该方法可自动估计基因间的网络结构及其变化点。我们通过对酿酒酵母细胞周期时间序列数据的分析证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信