Satoshi Kono, Virginia M Stiffel, Raymond D Gilbert
{"title":"Effects of long-term, high-altitude hypoxia on tension and intracellular calcium responses in coronary arteries of fetal and adult sheep.","authors":"Satoshi Kono, Virginia M Stiffel, Raymond D Gilbert","doi":"10.1016/j.jsgi.2005.09.006","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We have previously shown that after exposure to long-term hypoxia, fetal coronary flow is maintained at control levels despite a 25% reduction in cardiac output. We also demonstrated that coronary vascular rings isolated from the long-term hypoxic fetuses and studied in well-oxygenated bath system displayed significantly reduced depolarization-induced contraction strength in response to KCl. To study the mechanism of reduced fetal coronary vascular responses to KCl-induced contractions following exposure to long-term hypoxia, we measured tension and intracellular calcium simultaneously, as well as L-type Ca2+ channel density and sensitivity.</p><p><strong>Methods: </strong>Pregnant ewes were housed at altitude (3820 m) for approximately 110 days. At 138 to 141 days of gestation, long-term hypoxic and control animals were killed and fetal and adult left anterior descending coronary artery (LAD) was isolated and studied in a well-oxygenated bath system. Tension and intracellular calcium ([Ca2+]i) were measured simultaneously in response to increasing concentrations of KCl and, in addition, the sensitivity to the calcium channel blocker nifedipine was measured at a half maximal concentration of KCl. We also measured L-type Ca2+ channel density with (+)-[3H]PN200-110.</p><p><strong>Results: </strong>L-type Ca2+ channel density was decreased by approximately 31% in the long-term hypoxic fetal, but not adult, LAD. Tension in the long-term hypoxic fetal and adult LAD was significantly lower at all concentrations of KCl. [Ca2+]i was lower at rest in both fetal and adult LAD from long-term hypoxic animals and increased to lower levels at all concentrations of KCl. The ratio of tension to [Ca2+]i was also lower at all concentrations of KCl. Sensitivity to nifedipine was unchanged.</p><p><strong>Conclusions: </strong>The reduced L-type Ca2+ channel density and the reduced [Ca2+]i response to KCl, as well as the reduced tension response to [Ca2+]i, could potentially be involved in the reduction in depolarization-induced contractions in LAD from long-term hypoxic fetuses. In hypoxic adults, reduced [Ca2+]i and reduced tension response to [Ca2+]i may be involved in the lower tension response to KCl-induced contractions.</p>","PeriodicalId":17373,"journal":{"name":"Journal of the Society for Gynecologic Investigation","volume":"13 1","pages":"11-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jsgi.2005.09.006","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Gynecologic Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jsgi.2005.09.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2005/11/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Objectives: We have previously shown that after exposure to long-term hypoxia, fetal coronary flow is maintained at control levels despite a 25% reduction in cardiac output. We also demonstrated that coronary vascular rings isolated from the long-term hypoxic fetuses and studied in well-oxygenated bath system displayed significantly reduced depolarization-induced contraction strength in response to KCl. To study the mechanism of reduced fetal coronary vascular responses to KCl-induced contractions following exposure to long-term hypoxia, we measured tension and intracellular calcium simultaneously, as well as L-type Ca2+ channel density and sensitivity.
Methods: Pregnant ewes were housed at altitude (3820 m) for approximately 110 days. At 138 to 141 days of gestation, long-term hypoxic and control animals were killed and fetal and adult left anterior descending coronary artery (LAD) was isolated and studied in a well-oxygenated bath system. Tension and intracellular calcium ([Ca2+]i) were measured simultaneously in response to increasing concentrations of KCl and, in addition, the sensitivity to the calcium channel blocker nifedipine was measured at a half maximal concentration of KCl. We also measured L-type Ca2+ channel density with (+)-[3H]PN200-110.
Results: L-type Ca2+ channel density was decreased by approximately 31% in the long-term hypoxic fetal, but not adult, LAD. Tension in the long-term hypoxic fetal and adult LAD was significantly lower at all concentrations of KCl. [Ca2+]i was lower at rest in both fetal and adult LAD from long-term hypoxic animals and increased to lower levels at all concentrations of KCl. The ratio of tension to [Ca2+]i was also lower at all concentrations of KCl. Sensitivity to nifedipine was unchanged.
Conclusions: The reduced L-type Ca2+ channel density and the reduced [Ca2+]i response to KCl, as well as the reduced tension response to [Ca2+]i, could potentially be involved in the reduction in depolarization-induced contractions in LAD from long-term hypoxic fetuses. In hypoxic adults, reduced [Ca2+]i and reduced tension response to [Ca2+]i may be involved in the lower tension response to KCl-induced contractions.