{"title":"Low density lipoprotein receptor-related proteins (LRPs), Alzheimer's and cognition.","authors":"M E Harris-White, S A Frautschy","doi":"10.2174/156800705774322102","DOIUrl":null,"url":null,"abstract":"<p><p>This review will focus primarily on the role of the low density lipoprotein receptor-related protein (LRP-1) in neuronal synapse formation and function in Alzheimer's Disease (AD). We review the role that its ligands may have in cognition or AD: apolipoprotein E (ApoE), alpha2-macroglobulin, Transforming Growth Factor-Beta (TGFbeta, Tissue Plasminogen Activator (tPA), insulin growth factor binding protein-3 (IGFBP-3), which all bind LRP-1 and apolipoprotein J (ApoJ), which is a ligand for LRP-2. After reviewing its role as a signaling receptor, we discuss the connection between LRP and the NMDA glutamate receptor via the post synaptic density 95 (PSD-95) neuronal scaffold protein and the implications it may have for memory and cognition. Finally, we discuss the evidence supporting a role for LRP in AD. Although the evidence for LRP as a genetic risk factor is weak, many of its ligands impose genetic risk, and have been implicated in AD pathogenic cascades. We discuss the role of LRP in amyloid precursor protein (APP) processing and production of beta-amyloid (Abeta. We identify LRP ligands that accelerate aggregation of toxic Abeta species. LRP mediates crucial pathways in AD pathogenesis such as Abeta clearance, Abeta uptake, intraneuronal Abeta accumulation and Abeta-associated neuron death. Interestingly, the TGFbeta -V receptor is LRP-1. Data show that one critical ligand TGFbeta2, associated with neurodegeneration in amyloid diseases, induces LRP expression in PC12 cells. Data from rodent infusion models demonstrate the impact of TGFbeta2 in modifying Abeta- induced Long Term Potentiation (LTP) responses, presynaptic proteins, lipid peroxidation, gliosis and staining for neuronal nuclei. The evidence supports a complex and significant role of LRP in cognition and AD.</p>","PeriodicalId":11063,"journal":{"name":"Current drug targets. CNS and neurological disorders","volume":"4 5","pages":"469-80"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/156800705774322102","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets. CNS and neurological disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/156800705774322102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
This review will focus primarily on the role of the low density lipoprotein receptor-related protein (LRP-1) in neuronal synapse formation and function in Alzheimer's Disease (AD). We review the role that its ligands may have in cognition or AD: apolipoprotein E (ApoE), alpha2-macroglobulin, Transforming Growth Factor-Beta (TGFbeta, Tissue Plasminogen Activator (tPA), insulin growth factor binding protein-3 (IGFBP-3), which all bind LRP-1 and apolipoprotein J (ApoJ), which is a ligand for LRP-2. After reviewing its role as a signaling receptor, we discuss the connection between LRP and the NMDA glutamate receptor via the post synaptic density 95 (PSD-95) neuronal scaffold protein and the implications it may have for memory and cognition. Finally, we discuss the evidence supporting a role for LRP in AD. Although the evidence for LRP as a genetic risk factor is weak, many of its ligands impose genetic risk, and have been implicated in AD pathogenic cascades. We discuss the role of LRP in amyloid precursor protein (APP) processing and production of beta-amyloid (Abeta. We identify LRP ligands that accelerate aggregation of toxic Abeta species. LRP mediates crucial pathways in AD pathogenesis such as Abeta clearance, Abeta uptake, intraneuronal Abeta accumulation and Abeta-associated neuron death. Interestingly, the TGFbeta -V receptor is LRP-1. Data show that one critical ligand TGFbeta2, associated with neurodegeneration in amyloid diseases, induces LRP expression in PC12 cells. Data from rodent infusion models demonstrate the impact of TGFbeta2 in modifying Abeta- induced Long Term Potentiation (LTP) responses, presynaptic proteins, lipid peroxidation, gliosis and staining for neuronal nuclei. The evidence supports a complex and significant role of LRP in cognition and AD.