Cell and tissue autofluorescence research and diagnostic applications.

Monica Monici
{"title":"Cell and tissue autofluorescence research and diagnostic applications.","authors":"Monica Monici","doi":"10.1016/S1387-2656(05)11007-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cells contain molecules, which become fluorescent when excited by UV/Vis radiation of suitable wavelength. This fluorescence emission, arising from endogenous fluorophores, is an intrinsic property of cells and is called auto-fluorescence to be distinguished from fluorescent signals obtained by adding exogenous markers. The majority of cell auto-fluorescence originates from mitochondria and lysosomes. Together with aromatic amino acids and lipo-pigments, the most important endogenous fluorophores are pyridinic (NADPH) and flavin coenzymes. In tissues, the extracellular matrix often contributes to the auto-fluorescence emission more than the cellular component, because collagen and elastin have, among the endogenous fluorophores, a relatively high quantum yield. Changes occurring in the cell and tissue state during physiological and/or pathological processes result in modifications of the amount and distribution of endogenous fluorophores and chemical-physical properties of their microenvironment. Therefore, analytical techniques based on auto-fluorescence monitoring can be utilized in order to obtain information about morphological and physiological state of cells and tissues. Moreover, auto-fluorescence analysis can be performed in real time because it does not require any treatment of fixing or staining of the specimens. In the past few years spectroscopic and imaging techniques have been developed for many different applications both in basic research and diagnostics.</p>","PeriodicalId":79566,"journal":{"name":"Biotechnology annual review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1387-2656(05)11007-2","citationCount":"692","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology annual review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S1387-2656(05)11007-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 692

Abstract

Cells contain molecules, which become fluorescent when excited by UV/Vis radiation of suitable wavelength. This fluorescence emission, arising from endogenous fluorophores, is an intrinsic property of cells and is called auto-fluorescence to be distinguished from fluorescent signals obtained by adding exogenous markers. The majority of cell auto-fluorescence originates from mitochondria and lysosomes. Together with aromatic amino acids and lipo-pigments, the most important endogenous fluorophores are pyridinic (NADPH) and flavin coenzymes. In tissues, the extracellular matrix often contributes to the auto-fluorescence emission more than the cellular component, because collagen and elastin have, among the endogenous fluorophores, a relatively high quantum yield. Changes occurring in the cell and tissue state during physiological and/or pathological processes result in modifications of the amount and distribution of endogenous fluorophores and chemical-physical properties of their microenvironment. Therefore, analytical techniques based on auto-fluorescence monitoring can be utilized in order to obtain information about morphological and physiological state of cells and tissues. Moreover, auto-fluorescence analysis can be performed in real time because it does not require any treatment of fixing or staining of the specimens. In the past few years spectroscopic and imaging techniques have been developed for many different applications both in basic research and diagnostics.

细胞和组织自身荧光研究及诊断应用。
细胞中含有分子,当受到适当波长的紫外/可见辐射激发时,这些分子就会发出荧光。这种由内源性荧光团产生的荧光发射是细胞的固有特性,称为自荧光,以区别于通过添加外源性标记物获得的荧光信号。细胞自身荧光主要来源于线粒体和溶酶体。与芳香氨基酸和脂质色素一起,最重要的内源性荧光团是吡啶(NADPH)和黄素辅酶。在组织中,细胞外基质通常比细胞成分对自身荧光发射的贡献更大,因为胶原蛋白和弹性蛋白在内源性荧光团中具有相对较高的量子产率。在生理和/或病理过程中,细胞和组织状态发生的变化导致内源性荧光团的数量和分布及其微环境的化学物理性质的改变。因此,可以利用基于自荧光监测的分析技术来获取细胞和组织的形态和生理状态信息。此外,自动荧光分析可以实时进行,因为它不需要对标本进行任何固定或染色处理。在过去的几年中,光谱学和成像技术在基础研究和诊断中得到了许多不同的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信