{"title":"Genetic variation for expression of the sex determination pathway genes in Drosophila melanogaster.","authors":"Aaron M Tarone, Yaseen M Nasser, Sergey V Nuzhdin","doi":"10.1017/S0016672305007706","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence polymorphisms result in phenotypic variation through the pathways of interacting genes and their products. We focused on transcript-level variation in the splicing pathway for sex determination - a model network defining downstream morphological characters that are dimorphic between males and females. Expression of Sex lethal, transformer, transformer2, doublesex, intersex and hermaphrodite was assayed with quantitative RT-PCR in 0- to 1-day-old adult males and females of 36 Drosophila melanogaster inbred lines. Abundant genetic variation in the transcript levels was found for all genes. Sex-specific splices had high concentrations in the appropriate sex. In the other sex, low but detectable concentrations were also observed. Abundances of splices strongly co-varied between sexes among genotypes, with little genetic variation strictly limited to one sex. The level of sexually dimorphic Yolk protein1 expression - an immediate downstream target of the pathway - was modelled as the target phenotype of the upstream sex determination pathway. Substantial genetic variation in this phenotype in males was explained by leaky splicing of female-specific transcripts. If higher transcript levels of the appropriate isoform of sex determination genes are beneficial in a sex, then stronger leakiness of the inappropriate transcript might be deleterious, perhaps contributing to the fitness trade-offs previously observed between the sexes.</p>","PeriodicalId":12777,"journal":{"name":"Genetical research","volume":"86 1","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0016672305007706","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0016672305007706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Sequence polymorphisms result in phenotypic variation through the pathways of interacting genes and their products. We focused on transcript-level variation in the splicing pathway for sex determination - a model network defining downstream morphological characters that are dimorphic between males and females. Expression of Sex lethal, transformer, transformer2, doublesex, intersex and hermaphrodite was assayed with quantitative RT-PCR in 0- to 1-day-old adult males and females of 36 Drosophila melanogaster inbred lines. Abundant genetic variation in the transcript levels was found for all genes. Sex-specific splices had high concentrations in the appropriate sex. In the other sex, low but detectable concentrations were also observed. Abundances of splices strongly co-varied between sexes among genotypes, with little genetic variation strictly limited to one sex. The level of sexually dimorphic Yolk protein1 expression - an immediate downstream target of the pathway - was modelled as the target phenotype of the upstream sex determination pathway. Substantial genetic variation in this phenotype in males was explained by leaky splicing of female-specific transcripts. If higher transcript levels of the appropriate isoform of sex determination genes are beneficial in a sex, then stronger leakiness of the inappropriate transcript might be deleterious, perhaps contributing to the fitness trade-offs previously observed between the sexes.