{"title":"Ultrasonic signal detection based on Fabry-Perot cavity sensor.","authors":"Wu Yang, Chonglei Zhang, Jiaqi Zeng, Wei Song","doi":"10.1186/s42492-021-00074-0","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals. The Fabry-Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine. In this study, the outer diameter of the core cladding was 250 μm, the diameter of the core was 9 μm, and the microcavity sensing unit was only 30 μm. It could measure ultrasonic signals with high precision. The characteristics of the proposed ultrasonic sensor were investigated, and its feasibility was proven through experiments. Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection. The sensor is applicable to the field of biomedical information technology, including medical diagnosis, photoacoustic endoscopy, and photoacoustic imaging.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-021-00074-0","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-021-00074-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2
Abstract
Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals. The Fabry-Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine. In this study, the outer diameter of the core cladding was 250 μm, the diameter of the core was 9 μm, and the microcavity sensing unit was only 30 μm. It could measure ultrasonic signals with high precision. The characteristics of the proposed ultrasonic sensor were investigated, and its feasibility was proven through experiments. Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection. The sensor is applicable to the field of biomedical information technology, including medical diagnosis, photoacoustic endoscopy, and photoacoustic imaging.